
�ESKÉ VYSOKÉ U�ENÍ TECHNICKÉ V PRAZE

Fakulta jaderná a fyzikáln¥ inºenýrská

DIPLOMOVÁ PRÁCE

2008 Pavel Jakl

�ESKÉ VYSOKÉ U�ENÍ TECHNICKÉ V PRAZE

Fakulta jaderná a fyzikáln¥ inºenýrská

Katedra matematiky

DIPLOMOVÁ PRÁCE

Efektivní p°ístup k distribuci dat v sítích s
"mnoha" datovými sklady

E�cient access to distributed data: A "many"
storage element paradigm

Poslucha£: Pavel Jakl
�kolitel: Dr. Jérôme Lauret
Akademický rok: 2007/2008

�estné prohlá²ení

Prohla²uji na tomto míst¥, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem
uvedl ve²kerou pouºitou literaturu.

V Praze dne 9. kv¥tna 2008 .
Pavel Jakl

Název práce:

Efektivní p°ístup k distribuci dat v sítích s "mnoha" datovými sklady

Autor: Pavel Jakl

Obor: Inºenýrská informatika

Druh práce: Diplomová práce

Vedoucí práce: Dr. Jérôme Lauret, STAR/RHIC experiment, BNL, Upton, NY, USA

Konzultant: Michal �umbera, CSc., Ústav jaderné fyziky AV �R, v.v.i

Abstrakt: Realita ekonomiky datových úloºi²´ donutila petabytové experimenty (nap°.
RHIC/STAR) k vyuºívání levných a spolehlivých terciárních páskových systém· jako svých
hlavních datových sklad·. Dlouhé p°ístupové £asy a nep°ímý p°ístup k dat·m, charakteris-
tický pro tyto systémy, mají za následek masivní migraci dat na do£asné a mnohonásobn¥
rychlej²í datové sklady, kterými jsou nyní p°eváºn¥ levné disky p°ipojené k výpo£etním
uzl·m. Toto °e²ení je p°i srovnání s centralizovanou variantou výrazn¥ �nan£n¥ výhodn¥j²í.
Zprovozn¥ní takovéhoto modelu, který zárove¬ spl¬uje poºadavky kladené na klasické dis-
tribuované souborové systémy, není principiáln¥ snadná úloha.

V této práci je p°edloºen systém spl¬ující vý²e popsané poºadavky a sou£asn¥ je pro-
vedena jeho analýza v produk£ním prost°edí experimentu STAR. Jsou ozna£ena jeho slabá
a nedostate£ná místa, která jsou dále studována a optimalizována. Pat°í sem i rozsáhlá
analýza neefektivního p°ístupu k páskovému systému v£etn¥ parametr· ovliv¬ujících jeho
výkonnost. Dosaºené výsledky jsou následn¥ vyuºity k vytvo°ení t°í rozdílných rozvrho-
vacích algoritm· umoº¬ujících spravedlivé sdílení zdroj·. Vyhodnocení jejich výkonnosti
je provedeno pomocí k tomu vytvo°eného simulátoru páskového úloºi²t¥ napsaného v pro-
gramovacím jazyku Java.

Klí£ová slova: distribuované systémy, spravedlivé sdílení zdroj· (fair-share), rozvrhování,
simulace, vyvaºování zát¥ºe

Title:

E�cient access to distributed data: A "many" storage element paradigm

Author: Pavel Jakl

Abstract: Facing the reality of storage economics, petabytes scale experiments (e.g. STAR)
have been relying on tertiary storage systems as their primary data archive o�ering cheap
and reliable storage. However, non-direct and very slow access to data implies massive data
migrations to temporary and faster analysis locations. The utilization of cost e�ective cheap
disks attached to processing nodes over expensive centralized storage makes such approach
valuable. On the other hand, exploiting data access on this model is not an easy task.

In this work, a system allowing storage aggregation is presented along with its eva-
luation in production analysis environment of STAR experiment, identifying weak and
unsatisfactory elements that are further studied and improved. To name some of the stu-
dies and improvements performed in this work, ine�cient access to the tertiary storage
system is studied, including its key performance. This survey is further used to propose
three di�erent fair-share scheduling algorithms along their evaluation performed on the
simulator of tertiary storage system implemented in Java programming language.

Key words: distributed systems, fair-share, scheduling, simulation, load balancing

Contents

1 Introduction 3

2 Storage requirements, topologies and technologies 7
2.1 Synopsis . 8
2.2 Centralized vs distributed topology . 8
2.3 Hardware vs software solution . 10
2.4 Tertiary storage technologies . 12

2.4.1 Magnetic tapes and drives . 13
2.4.2 Tape collections and robots . 15

2.5 Distributed file systems for HENP environment . 15
2.5.1 The dCache system . 16
2.5.2 Scalla (Structured Cluster Architecture for Low Latency Access) system 17

2.6 Integration of Scalla/Xrootd with Storage Resource Manager 20
2.6.1 Architecture integration overview . 22
2.6.2 Creating uniform name-space . 23

3 Performance survey of tertiary storage system 27
3.1 Synopsis . 28
3.2 STAR analysis scenario . 28
3.3 Key parameters of the tape system performance . 29

3.3.1 File size parameter . 30
3.3.2 Number of files per tape mount parameter . 31

3.4 Evidence of the key parameters influence on the tape system’s performance 32
3.4.1 Monitoring key parameters in relation to performance 32
3.4.2 Performance parameters analysis . 33

3.5 Effect on increasing the number of files per tape mounts . 35
3.5.1 Improvement demonstration in real environment . 39

3.6 Stability as another dimension of the efficiency . 39
3.6.1 Lifetime of a request . 40

4 Fair-share scheduling of tertiary storage system 43
4.1 Synopsis . 44
4.2 A generalization of the problem . 44
4.3 Tertiary storage system scheduling specification . 46
4.4 Fair-share scheduling algorithms . 47

4.4.1 The First Come First Serve (FCFS) algorithm . 47
4.4.2 The Weighted Fair Queuing (WFQ) algorithm . 47
4.4.3 The Weighted Fair-share Grouping (WFSG) algorithm 48

5 An evaluation of scheduling algorithms 53
5.1 Synopsis . 54
5.2 Tape system hardware . 54

5.2.1 Tape drive model . 54
5.2.2 Tape library system and robot arm model . 56

5.3 Access time of request processing . 56
5.4 Request generation . 57

5.4.1 Mapping STAR data-set . 58
5.5 Software design of the simulator . 61

5.5.1 Events and scheduler of events . 61
5.5.2 Events of the tape system . 61
5.5.3 Work-flow of the tape system simulator . 62

5.6 Results of the evaluation . 63
5.6.1 Moving rate . 65
5.6.2 Fixed rate . 65

1

2 CONTENTS

5.6.3 A justification of WFSG parameters . 67

6 Best placement strategy and performance comparison 69
6.1 Synopsis . 70
6.2 Best placement strategy . 70

6.2.1 Investigating workload of the system environment . 73
6.3 Measuring and comparing the performance . 76

7 Conclusion 81

A Implementation details 83
A.1 Measurements and statistics . 84

A.1.1 DataCarousel performance . 84
A.1.2 Monitoring of HPSS . 84
A.1.3 Key parameters of tape system performance . 85
A.1.4 Key parameters proof . 85
A.1.5 Load statistic . 85

A.2 Tape system simulation . 86
A.3 Coexistence with other Data management tools in STAR . 86

B Enclosed CD 89

C Load statistic 91

Bibliography 96

Chapter 1

Introduction

4 CHAPTER 1. INTRODUCTION

The amount of scientific data generated by simulations or collected from large scale experiments have
reached levels that cannot be stored in the researcher’s workstation or even in his/her local computer center.
The amount of data is no longer measured in megabytes, but instead it scales order of magnitudes from Ter-
aBytes (TB) to PetaBytes (PB). In the data analysis phase, the scientist typically wants to extract a subset
of the data based on experimental conditions or selection criteria from a data set representing detector data
acquired during an High Energy and Nuclear Physics (HENP) experiment. The Data Acquisition System in
these detectors records information about collision events between particle beams. The information is stored
in files organized in series (or datasets) and logically named after the experimental conditions. Each file
contains information about thousands of such events. Typical analysis of data involves searching for rare and
interesting processes and is performed in multiple phases involving classification and summarization. In ad-
dition, the same data files may be shared simultaneously by several groups of scientists with diverse interests.

A such real example of such experiment is the STAR experiment, one of the four physic’s experiments at

� �

���� ���� ���� ���� ���� ���� ���� ����
�

����

	���

����

����

�����

����������

�
�
�
�
��
��
��
�
�
��
�
�
�

Figure 1.1: Raw data projection for the STAR experiment

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), USA. In this kind
of experiment and science, most physics topics are statistically driven and in order to have a significant
statistical data sample, the experiment has generated enormous amount of data since May/June 2000. The
word enormous means magnitude of several Peta bytes (1015 of byte) of data stored in over 10 millions of
files over past 8 years of collider’s running. The figure 1.1 shows size expectations of data for up-coming
years with regard to STAR physics program and planned upgrades which generate increase of data to be
taken.

Taking into account such huge volume of data, any experiment facing petabytes scale problems is in need
for a highly scalable tertiary storage system to keep a permanent copy of the data. Tertiary storage systems
are often used in “write once, read never” applications such as storage of large datasets (in which data is
rarely reused), backup, and archiving. Today, however, it is becoming more common to use tertiary storage
system to store active data while the cost of purchasing and maintaining fast secondary storage is highly
exceeding acceptable limit. In detail, the cost 0.5 PB size tertiary system is 10 times cheaper comparing to
disk-based system, including the costs of several years running (electricity, space etc.) [1].

In general, the tertiary storage system offers cheap and reliable storage, but on the other hand very slow
access and data needs to be migrated on temporary and faster locations where could be available for physi-
cist’s analysis. One could imagine two strategies: a centralized disk pool or a distributed disk pool approach.
While standard protocols exists to mount and access centralized pools, distributed disk pools is of bigger
interests as it would allow the recovery of sparse and cheap space. Such a system responsible for managing
a temporary storage needs to fulfill several requirements.

First, in most cases the temporary and faster location has smaller capacity than the entire tape system
and therefore it needs to make decisions which files should reside, which of them are pruged by the system.
This could be done by taking into account user’s access pattern. Second, the system has to optimize access
and performance of tertiary storage system in order to achieve reasonable access time when analyzing and
processing data which has to be retrieved from the tertiary system during an entire data-set survey.
Third, we need to face issues of name-space, safe keeping of meta-data, data replication access and coher-
ence.
Fourth, the system needs to provide stable performance in data access with consideration to scalable poten-
tial.

5

Last but not least, the storage system needs to provide robustness in the case of infrastructure failures and
recover automatically from failures. This is especially important in distributed environment where remote
troubleshooting is from problematic perspective not possible.

In this work, we will present some of many requirements with constitute a robust data storage solution
and will do so by putting into perspective different storage architectures, topologies and approaches. We
will first introduce several current available solutions, make theoretical comparison between them and show
their architectures as well as their drawbacks. We will then focus on the highlight of one solution, explain
the rationales behind its choice, show its performance and scalability as results of the evaluation in the real
environment of the High Energy and Nuclear Physics experiment (HENP).

Furthermore, our contribution is presented aimed to improve the access and performance from/to tertiary
storage system within the highlighted solution. Primarily, comprehensive and detailed survey of the ter-
tiary storage system performance is carried followed by the proposal of three different scheduling algorithms
accommodating a fairness of requests from users and achieving the sufficient performance. The proposed
algorithms are further evaluated and compared on the simulator of the tertiary storage system reflecting the
STAR physics data. Last but not least, best placement strategy is studied in respect to balance the load
of requests in the widely distributed environment represented by the topology of the inspected storage and
solution. At the end, the scalability of this solution is evaluated and compared to other available solutions.

6

Chapter 2

Storage requirements, topologies and
technologies

8 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

2.1 Synopsis

This chapter will explain several terms and technologies used in this thesis. We start by discussing different
topologies (centralized, distributed) of data storage focusing on performance of clusters as well as the differ-
ences, advantages, disadvantages of hardware and software solutions with the application to real examples
of the storage solutions.

Furthermore, two diverse distributed solutions (dCache [2] and Scalla/Xrootd [3]) well-known in High En-
ergy and Nuclear Physics (HENP) environment are discussed. Our discussion will focus on the architectures
of these two systems in respect of performance, scalability and name-space approaches. The result of this
discussion evolves toward the main work. It is a deployment, integration, tuning and several studies of
Scalla/Xrootd package in the widely distributed environment to accomplish efficient large data access as
demonstrated and used in the STAR physics data analysis framework and the community at large.

The last section of this chapter presents integreation of the Scalla/Xrootd package with different data
management tool (SRM) to achieve better cache management.

2.2 Centralized vs distributed topology

There are three coexisting methods mentioned in [4], [5] for connecting disk-based storage to computing nodes
for fast access. These three methods could be merged and re-grouped into two main topologies/approaches:

• Centralized storage - a centralized storage is a storage with many heterogeneous servers connected
to one single storage space. The single storage space can have heterogeneous storage entities or disk
drives. With centralized storage solution, there are two mainstream sub-groups corresponding to two
main architecture choices or strategies:

� Network Attached Storage (NAS) - NAS systems usually contain one or more hard disks, often
arranged into logical, redundant storage containers or RAID arrays connected over the network
to computing node. The containers are called NAS fillers.

� Storage Area Networks (SAN) - SAN is dedicated, high performance storage network that trans-
fers data between servers and storage devices, separate from the local area network connected
to computing nodes using Fibre Channel. The Fibre Channel is a high performance network
technology designed to bring speed and flexibility to multiple disc drive storage systems.

• Distributed storage - a distributed storage is a storage that has many geographically-dispersed disk
drive units, usually spread over many hosts or servers. All hosts or servers are connected together
through the network.

� Direct Attached Storage (DAS) - DAS is the most basic level of storage in which storage devices
are part of the host computer and directly attached to it. The computing nodes must therefore
”physically” contact the server (the host owning the storage) in order to connect to the storage
device. Unix systems implements the NFS (Network File System) [6] protocol as one way to
communicate between server and clients in a uniform manner. But within this approach, the
complexity of making available the storage attached to individual nodes from all nodes would
be burdensome (any new storage would imply a reconfiguration of the NFS configuration on all
nodes) but would also create a complex communication mesh on the cluster. Also, NFS based
architecture would still suffer from the single point of failure represented by the server node.

Choosing right storage solution can be a very difficult question, because there is no right answer for everyone.
It is very important to look on the load and usage profile but also on the long-term plans and requirements
of the current organization. Several key criteria which could be considered include:

• Performance - aggregate I/O and throughput requirements of the system

• Capacity - the amount of data to be stored

• Scalability - possible long-term and easy growth of the storage system

• Availability and Reliability - storage is on-line 24/7 without any disruptions

• Data protection - recovery and/or backup requirements

• Maintenance - human resources requirements and cost for maintenance of the system

• Budget concerns - initial purchase price in regards of the storage volume

2.2. CENTRALIZED VS DISTRIBUTED TOPOLOGY 9

Since the whole discussion is dedicated to having very high performance, reliable and fast access to
physics data one could imagine that well-known SAN with its ”Fibre Channel” could be the best choice.
However, there are many circumstances when deciding between NAS and SAN is not an easy task.

Firstly, SAN solutions come into flavors much faster than what was available 5 years ago. During the
past five years the transfer rate for leading edge Fibre Channel has increased fivefold from 20MB per sec-
ond to 100MB per second per one fiber. Over this same period, however, the transfer rate for leading
edge networking interconnects has increased tenfold from copper based connection at 12.5MB per second
for 100baseT Ethernet to 128MB per second for Gigabit Ethernet per machine or client. In other words,
network data rates originally possible from solutions reserved for high end servers are now so inexpensive
that they have become commodities, making possible an aggregate IO (over many clients) which cannot be
absorbed by a single fiber channel NAS.
Secondly, NAS is easier to understand than SAN. SAN are very complex with its infrastructure; one has to
firstly understand Fibre Channels, then the switch manual, and the manuals that come with any SAN man-
agement software. The concepts of Fibre Channel, arbitrated loop, fabric lo-gin, and device virtualization
are not always easy to grasp.
Thirdly, NAS is easier to maintain than SAN. SANs are composed of pieces of hardware from potentially
many vendors. SANs have therefore a larger number of components that can fail and fewer tools to trou-
bleshoot these failures, and more possibilities of finger pointing.
Lastly, NAS is much cheaper than SAN. Again, since NAS let you leverage your existing network infras-
tructure, they are usually much cheaper to implement than a SAN.

Although, it may seem that NAS is a more appropriate solution for each environment, there could be
instances where the SAN’s aggregate throughput can overbalance its cost and complexity.
Another dimension of the question comes when one start considering centralized storage versus distributed.
The question ”DAS, NAS, SAN ? ” could perhaps be reduced just to ”Centralized vs distributed ?”
as will be explained.

Although distributed storage introduce many components within a complex server/server and server/clients
layout, from economical statistics, the initial purchase price is cheaper by factor of 10 comparing to the
centralized storage. As a consequence, even though the implementation of centralized storage is growing at
a faster rate than that of distributed storage (mainly due to the lack of ready-to-use solution to manage
data distribution, access and/or even data aggregation), its cost cannot compete with the prospect offered
by distributed storage solutions.

When considering distributed disk, it is important to understand what the data availability requirements
are. In order for clients on the network to access the storage device, they must be able to access the server it
is connected to, not even speaking of getting information about which server contact. Getting information
of where the files are located implies the use of additional external catalog lookups which scale grows with
the number of storage devices and nodes. If the server is down or experiencing problems, it will have a direct
impact on user’s ability to access the data. In addition, the server also may bear the load of processing
applications which can at the end slow the IO throughput (sharing of storage and CPU). The sharing of
storage and CPU is not a requirement and may lead to designs where applications are not allowed to run
on servers having the storage (i.e dedicated servers for storage).

When applying this discussion to studied case of having fast access to physics data and making a con-
clusion, the availability and data protection aspects in distributed storage could be reduced by re-copying
the lost data from the master copy on the tape drive to the other server. Speaking of scalability and capacity
of distributed storage, one could imagine a proportinal growth of storage to the growth of computing nodes,
since the storage is attached. There is no other need for extra hardware in order to increase the size of the
storage. The maintenance resources are reduced in case of distributed disk, since there is no need of having
two separated persons for maintaining computing and storage element, one person can serve both of them.

As a conclusion, the distributed storage seems as a better solution for physics data and is bringing cheaper,
scalable, capable solution, but on the other hand worse manageability, sometimes called: ”Islands of infor-
mation”. The difficulty relies on management of space spread among multiple servers, not mentioning load
balancing issue, obtaining highest performance and scalability (since CPU and storage are now coexisting).

Driven by the need for vast amount of data and economics, the STAR software & computing project has
taken the decision to move towards the distributed storage model infrastructure as their primary storage
solution illustrated in the figure 2.1. This satisfies the needs of the collaboration and the requirements for
the upcoming years. To be more concrete, in 2007 STAR now-days disposes, at the RCF (RHIC Computing

10 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

� �

����������	

�
��

��
��

	
�
�
��
�
�
�

���� ���� ���� ���� ���� ���� ���� ����
���

������

������

������

 �����

������

������

������

������

����
�!���"�"��

#���
	$�%�"�"��

Figure 2.1: RHIC computing facility capacity profile

Facility) 350 TB of disk space spread over 500 nodes and 75 TB of centralized storage implemented by SAN
and exposed to the users via NFS.

This is not without challenge and the next chapters will be focused on the architectural and technolog-
ical aspects of the management and performing large scale data access on the distributed storage.

2.3 Hardware vs software solution

By this time, we have already discussed centralized and distributed storage topologies with their bene-
fits/handicaps from viewpoint of infrastructure issues trying to address main goals and postulates of the
ability to somehow publish data. The previous question of ”Centralized vs distributed ?” should be dis-
cussed from the different vision as: ”Hardware vs software solution” with reference to current nowadays
implementations.

Nowdays, current centralized file system designs fundamentally limit performance and availability since all
disk read and writes go through central server or head node. To increase the performance, reliability, avail-
ability and reduce possible bottlenecks, a typical installation relies on specialized server machines/hardware
configured with multiple processors, I/O channels, and I/O processors or even using pure hardware archi-
tectures such as RAID.

In order to address reliability problems of failing devices as well as to improve the I/O performance in
centralized solutions, the concept of RAID (Redundant Array of Inexpensive/Independent Disks) [7] has
been widely adopted over the past years. The cited publication originally detailed five strategies, usually
referred to as RAID levels and numbered from 1 to 5, which use different strategies to protect against
data loss, to improve the performance, or both. Later on, additional and hybrid RAID levels have been
developed, among them linear RAID, RAID-0, RAID-6, RAID-10, or RAID-53, to name the most common
ones. The basic idea of all RAIDs is to increase data availability to enhance reliability and/or performance.
One strategy used by several RAID levels is striping: logically consecutive data is subdivided into blocks,
which are stored in a round-robin fashion. Second strategy used is: a parity block - the exclusive OR of the
corresponding bits of data blocks being striped.

This improves the transfer rate in streaming mode as multiple requests can be issued to the constituent
devices in parallel fashion. The actual RAID level determines, how redundant the information is generated,
if at all, and how the data and the redundancy information is spread over the devices. A more detailed
discussion of the advantages and shortcomings of the different RAID levels can be found in [8].

While RAID offers performance and reliability, it suffers from 2 limitations. First, the overhead of parity
management in all RAID levels can hurt performance for small writes; if the system does not simultaneously
overwrite all N-1 blocks of a stripe, it must first read the old parity and some of the old data from the disks
to compute the new parity. A second and most significant drawback of commercially available hardware
RAID systems is that they are significantly more expensive that non-RAID commodity disks because they
need to have special-purpose hardware to compute parity.

No matter, if the centralized solution is using architecture such as RAID and its advance striping, a central

2.3. HARDWARE VS SOFTWARE SOLUTION 11

server represents a single point of failure requiring server replication for high availability. Replication surely
increases the cost and complexity of central servers and can increase latency on writes since the system must
replicate data at multiple servers. The overhead can even grow and be functionally dependent on the size
of the repository.

One of the file system and storage solution, trying to solve a problem having one central server as a bottle-
neck is Panasas file system and storage cluster [9], [10]. The core of the Panasas architecture is a cluster of
intelligent ”StorageBlades”. These hardware-based devices provides the storage and parallel transfer capa-
bilities of the system. They are pooled into a cluster that provides the capacity and load balancing across
the cluster, and fault tolerance through the RAID reconstruction. Additional cluster of ”DirectorBlades”
forms the meta-data management layer and acts as a protocol gateway to support other file system and
data management protocols, including NFS and CIFS.

The other file system worth to be mentioned is Lustre [11], which aims to provide a scalable, high per-
formance file system in more software fashion way than Panasas. Its architecture follows the client-server
paradigm using multiple servers, the so-called I/O daemons. These daemons usually run on I/O nodes,
which are special nodes in the cluster dedicated to I/O. User applications run on compute nodes, which
need not to be distinct from I/O nodes. A meta-data manager handles all meta-data information. This
manager is contacted by user processes for operations such as open, close, create, or remove. The meta-data
manager returns information that is used by the clients to contact the I/O daemons for direct file access.
The meta-data manager is contacted in each case of file system meta-data changes. In Lustre’s terminology,
the servers are called Object Storage Targets (OSTs). They manage the data stored on the underlying
devices, the so-called Object Based Disks (OBDs). This two-fold storage abstraction allows for an easy
integration of smart storage devices with object-oriented allocation and data management in hardware and
follows the general trend of offloading I/O to the devices itself.
Even if the file system is somehow distributed on dedicated server, there is still the question whether the
central meta-data server could become a bottleneck whenever the cluster grows.

The high-performance storage solution, known as the General Parallel file system (GPFS) [12] coming
from IBM try to address the meta-data issue Lustre doesn’t consider. In contrast with other file systems,
GPFS does not require a central meta-data server. Instead, meta-data is handled at the node which is using
the file. This approach avoids the central server becoming a bottleneck in meta-data intensive applications,
and it also eliminates this server as a possible single point of failure. Having the handling of meta-data
at the level of I/O operation without any more complex organization and infrastructure has been already
proved by GPFS as limiting the number of users and nodes serving data. While resolving one issue, another
comes into the picture: the synchronization of requests and meta-data handling.

The Google file system [13] is an example of distributed storage system taking a dramatic different
approach: it makes use of the knowledge of the application needs by moving the data closer to the applica-
tion during system operation. After processes migration the data is accessible on the local node, reducing
both the CPU load and the load on the network. Another drawback common to almost all storage systems
is the neglect of sophisticated reliability mechanisms. The preferred approach to protect against data loss
- if the system provides such a protection at all - is by generating replicas, which reduces the amount of
usable storage capacity significantly but increase availability. Another approach is having the primary copy
of a file at any kind of cheap storage solution such as a tape and in case of need, such data can be quickly
migrated back to live storage.

A summarizing comparison of all mentioned architectures and file system is difficult and maybe inap-
propriate, since they differ in many aspects, such as interfaces, hardware requirements, abstraction levels,
reliability, and performance (in terms of latency or throughput).
However, a characteristic common to almost all these systems is that they do not take into account the
possible benefit of adapting the architecture to the characteristics of a broad range of applications, i.e. to
their access behavior and their inherent independence of tasks. In many applications read accesses tend to
occur much more frequently than write accesses. Most data is written once but read multiple times. This
is applicable to all kinds of applications performing searches, data analysis, data mining, data retrieval, and
information extraction. In addition, many applications can be split into several independent tasks processing
independent data.

A common denominator is also that the performance bottleneck of these systems is usually meta-data
handling inside the file systems, since meta-data operations could make up over 50% of all file system oper-
ations [14]. These solutions usually do not scale well with increased number of clients and data, even with
using a specialized expensive hardware.

12 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

The answer to the initial question of hardware vs software solutions, there is innumerable number of variants
and combination hardware and software solutions, some of them with higher weight on hardware and some
of them on software. Software solutions involve cheaper price and portability of the system, but on the other
hand possibly lacking performance introduced by specialized hardware. In defense of the software solutions,
hardware solutions have the additional drawback of relying on software and drivers for hardware not being
portable on all platforms. Moreover, with architectural, methodological, algorithmic, technological aspects
and experiences can possible achieve same results seen with hardware improved solutions.

2.4 Tertiary storage technologies

Any experiment facing petabytes scale problems are in need for a highly scalable tertiary storage system to
keep the permanent copy of the data. Those systems are also being referred as Mass Storage Systems
(MSS).

Picture Fig. 2.2 shows position of tertiary storage in the storage hierarchy. At the top level of the hi-
erarchy we have RAM as primary storage, which can be further divided into CPU registers, cache memory
(extended storage) and main memory (central storage).
The secondary storage level contains devices that are not not directly accessible by the CPU, for example
magnetic disk devices.
At the lowest level of the pyramid, tertiary storage systems are situated. It can be seen that by applying
the rule of the pyramid, tertiary storage system offers cheap and huge amount of storage, but on opposite
site very high access times.

A tertiary storage system [15] typically refers to a data storage system that uses drives that accept re-
movable media, storage rack for the for the removable media, and a robot arm to to transfer media between
the storage rack and the drives. The media can be optical disks (entire system is usually called Jukebox) or
tapes, through this thesis we concentrate on tape-based tertiary storage. Therefore, if we refer to tertiary
storage system, we mean tape-based tertiary storage system. Tertiary storage system can be equipped with
different drive types, leading to configurations in which some of removable media can only be read by a
subset of drives. Such situation can arise, for example from gradual upgrades of tertiary system hardware.

Figure 2.2: Storage solutions pyramid

Hierarchical Storage Management system (HSM) extends secondary storage (disk-based) file sys-
tems by adding tertiary storage as an ”overflow area”. Typically, secondary storage is used as cache for
set of files that reside on tertiary storage. The size of the cache is usually several times smaller than entire
capacity of tertiary storage system, therefore when application opens a file which is not in the cache, the
file has to be brought in from the tertiary storage.
An example of HSM is High Performance Storage System (HPSS) [16]. There are also other systems run-
ning in production use, however our work in this thesis has been performed on this system.

The technology used to implement tertiary storage system influences the performance that the user will

2.4. TERTIARY STORAGE TECHNOLOGIES 13

obtain from the entire system. In this subsections, the basic technologies used to build common taped-based
tertiary storage system are discussed.

2.4.1 Magnetic tapes and drives

A tape drive is a data storage device that reads and writes data stored on a magnetic tape, sometimes
also called as a streamer.

A fundamental characteristic of a tape drive is the layout of data (i.e. recording method) on the tape
and also width of the tape. Half inch wide tapes has historically been the most common width of tape for
high capacity data storage. Many other sizes exist and most were developed to either have smaller packaging
or higher capacity.

To achieve a high density, the tape drive must use as much of the available surface area as possible, and a
tape is typically much wider then the data tracks. Recording method is an important way to classify tape
technologies, generally falling into two categories:

� linear

� helical

Figure 2.3: Data layout of linear tape (Wikipedia)

The linear method arranges data in long parallel tracks that span the length of the tape as seen on the
figure 2.3. Multiple tape heads simultaneously write parallel tape tracks on a single medium. This method
was used in early tape drives. It is the simplest recording method, but has the lowest data density.

A variation on linear technology is linear serpentine recording, which uses more tracks than tape heads
as can be seen on the figure 2.4. Each head still writes one track at a time. After making a pass over the
whole length of the tape, all heads shift slightly and make another pass in the reverse direction, writing
another set of tracks. This procedure is repeated until all tracks have been read or written. By using the
linear serpentine method, the tape medium can have many more tracks than read/write heads. Compared to
simple linear recording, using the same tape length and the same number of heads, the data storage capacity
is substantially higher. Helical scan tape drives wrap the tape around a drum that contains the read/write

Figure 2.4: Data layout of linear serpentine tape (Wikipedia)

heads and rotates the drum rapidly while the tape is transported relatively slowly. Tracks are written at a
small angle (10 to 20 degrees) with respect to the direction of tape movement onto a slow-moving magnetic
tape as seen on the figure 2.5. Helical tapes provide large storage capacities, because the track and linear
density are high. They also provide high transfer rates, because of the high relative speed of the head across
the tapes. This recording method is used by virtually all videotape systems and several data tape formats.

14 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

Figure 2.5: Data layout of helical tape (Wikipedia)

The tape package can be a cartridge (containing 1 reel) or a cassette (containing 2 reels). The tape in
a cartridge must be extracted from the cartridge before the tape mount can complete into a tape drive
where data can be read from the tape. In addition, the tape cartridge must be rewound before it is un-
mounted.
A cassette can be removed from the tape drive without being rewound. However, the tape in a cartridge
must be positioned at a special zone (a “landing zone”) to ensure that data is not exposed to contaminants.
If the tape drive does not support landing zones, the cartridge must be rewound.

From user perspective the primary difference between tape data storage and disk data storage is that
tape is a sequential access medium while disk is a random access medium. Hence tape uses a very trivial file
system in which files are addressed by number not by file name. Metadata such as file name or modification
time is typically not stored at all and are handled in separated meta-data system, which is usually being
part of HSM.

Tape has quite a long latency for random accesses since the deck must wind an average of one-third the
tape length to move from one arbitrary data block to another. Most tape systems attempt to alleviate the
intrinsic long latency, either using indexing, where a separate look-up table (tape directory) is maintained
which gives the physical tape location for a given data block number (a must for serpentine drives), or by
marking blocks with a tape mark that can be detected while winding the tape at high speed.

In a typical format, data is written to tape in blocks with inter-block gaps between them, and each block is
written in a single operation with the tape running continuously during the write. However, since the rate
at which data is written or read to the tape drive is not deterministic, a tape drive usually has to cope with
a difference between the rate at which data goes on and off the tape and the rate at which data is supplied
or demanded by its host.

Various methods have been used alone and in combination to cope with this difference. The tape drive can
be stopped, backed up, and restarted (known as shoe-shining, because of increased wear of both medium
and head). A large memory buffer can be used to queue the data. The host can assist this process by
choosing appropriate block sizes to send to the tape drive. There is a complex trade-off between block size,
the size of the data buffer in the record/playback deck, the percentage of tape lost on inter-block gaps, and
read/write throughput.
Finally modern tape drives offer speed matching feature, where drive can dynamically decrease physical
tape speed as much as 50% to avoid shoe-shining.

Many tape drives use hardware data compression to increase their capacity and to improve their data rates.
Compression algorithms are embedded in tape drive hardware and using typical ratio 2:1. Some enterprise
tape drives allow for an encryption to be performed after compression. (Once data has been encrypted, com-
pression algorithms are no longer effective.) The actual compression algorithms used in low-end products
are not the most effective known today, and better results can usually be obtained by turning off the com-
pression built into the device and using a software compression (and encryption) on application level instead.

Recent trend in magnetic tapes is bound up with Linear Tape-Open (LTO) technology [17], [18]. The
improvement of this technology is in the use of servo tracks. Servo tracks on the tape cartridge are recorded
at the time of manufacture. These tracks enable the tape drive to position the read/write head accurately
with respect to the media while the tape is in motion.

The LTO specification divides the full tape width into four data bands. The tape head spans one band, and
fills each data band sequentially. At the top and bottom of each data band is a servo band. The servo bands

2.5. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 15

provide location information to the head as it writes and verifies data tracks within that band. The process
of positioning the head on the tape is an interaction between the head, the media, and the servo elements
of the system. The innermost bands are written first, therefore data bands are numbered 3,1,0,2 across the
tape and are filled in numeric order. To afford protection to data written in the outermost bands, two blank
areas called edge guard bands border the top and bottom edges of the tape.

Data tracks are written in forward and reverse passes, also called wraps. It takes several wraps to completely
fill a data band. All of the write elements in the head write simultaneously as the head passes over the data
band from the physical start of the tape to the physical end. This makes one forward wrap. At the end,
the head shifts to line up the write elements with a new set of tracks within the same data band. It is now
ready to make a reverse wrap. This leads to a set of serpentine patterns in each data band.

Table 2.1 shows 4 generations of LTO technology, where the characterization of an each generation varies
mostly in native data size and transfer speed.

Table 2.1: LTO tape generations
Generation LTO-1 LTO-2 LTO-3 LTO-4
Release Date 2000 2003 2005 2007
Native Data Capacity 100 GB 200 GB 400 GB 800 GB
Max transfer speed 15 MB/s 40 MB/s 80 MB/s 120 MB/s
Tape Thickness 8.9 µm 8.9 µm 8 µm 6.6 µm
Tape Length 609 m 609 m 680 m 820 m
Tape Tracks 384 512 704 896

2.4.2 Tape collections and robots

Several companies have built automated library systems in order to provide higher bandwidth and capacity
that cannot be supplied by a one single tape drive. These libraries hold tens, hundreds or thousands of
cartridges that can be loaded by robot arms into a collection of magnetic tape drives.

Large libraries generally contain many cartridges, several drives and one or two robot arms for handling
cartridges. The cartridges are often arranged in a rectangular array.

Other large library configurations include a hexagonal silo with cartridges and drives along the walls,
and a library consisting of several cylindrical columns holding cartridges that rotate to position them. One
disadvantage of large tape libraries is the low ratio of drives and robot arms to cartridges, in a heavily-loaded
system, there may be contention for both arms and drives.

Robot access times are fairly short compared to tape positioning operations like seek and rewind. A tape
switch operation, which replaces a tape loaded in a tape drive with a new tape from a shelf, involves the
use of the robot arm. A tape switch operation can take several minutes of file retrieval operation.

The tape switch may first require rewinding the currently-loaded tape. Next, that tape must be physi-
cally ejected from the tape drive. The robot arm moves to unload the old tape and load a new one. Then
the tape drive physically loads the new tape, including reading servo information at the start of the tape.
The tape drive performs a forward search operation to position the tape. Finally the tape drive performs
the read or write data transfer operation. The robot contribution to the tape switch time is between 5 and
20 seconds on typical robots. [15]

2.5 Distributed file systems for HENP environment

In contrast to central server designs and recent discussion of hardware and software postulates, one can
imagine building a truly distributed network file system with no central bottleneck or single point of failure.
The purpose of a distributed file system is to allow users of physically distributed computers to share data
and storage resources by using common file system. The main and basic features such a system must
accomplish are [19]:

• Data consistency: distributed file systems operate by allowing a user on a computer connected to
a network to access and modify data stored in files on another computer. Thus a mechanism must be

16 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

provided in order to ensure that each user can see changes that others are making to their copies of
data

• Uniform access: a distributed computing environment should support global file names. One mech-
anism that allows the name of a file to look the same on all computers is called a uniform name
space

• Security: distributed file systems must provide authentication. Furthermore, once users are authenti-
cated, the system must ensure that the performed operations are permitted on the resources accessed.
This process is called authorization

• Reliability: the distributed file system scheme itself improves the reliability because it’s distributed
nature, that is, the elimination of the single point of failure of non-distributed systems

• Availability: a distributed file system must allow systems administrators to perform routine main-
tenance while the file server is in operation, without disrupting the user’s routines

• Performance: the network is considerably slower than the internal buses. Therefore, the fewer clients
have to access servers, the more performance can be achieved by each one

• Scalability: the performance of the distributed file system must scale with number of clients and
servers

• Standard conformance: comply with the IEEE POSIX 1003.1 file system application interface (C
API)

The requirements coming from High Energy and Nuclear Physics (HENP) environment, gathered up by
many years of experience and followed by recent computing directions and infrastructure such as Grid [20],
are [2], [21]:

• Fault tolerance: a high degree of fault tolerance at the user side is mandatory to minimize the
number of jobs/applications failure after a transient or partial server side problem or any kind of
network glitch or damaged files

• Load balancing: a load balancing mechanism is needed, in order to efficiently distribute the load
between clusters of servers and preventing hot spots in cluster

• Tertiary Storage integration: in order to support incredible amount of data, mass storage system
integration is required

• Grid support: a distributed file system should have the ability to connect to other instances located
in different parts of the world. It should have a capability to share and interchange data with other
storage solutions

There are currently 2 distributed file systems partially complying with these requirements, well known in
HENP computing: dCache [22], [2], [23], [24] and Xrootd [21], [3], [25].

2.5.1 The dCache system

The dCache system is a sophisticated system which allows transparent access to files on disk or stored on
magnetic tape drives in tertiary storage systems. It is jointly developed by DESY [26] and Fermilab [27].

dCache has proved to be capable of managing the storage and exchange of terabytes of data, transpar-
ently distributed among dozens of disk storage nodes. One of the key design features is that, although the
location and multiplicity of data is autonomously determined by the system, based on configuration, CPU
load and disk space, the name space is uniquely represented in a single file system tree. The system has
shown to significantly improve the efficiency of connected tape storage systems, through caching, i.e. gather
& flush, and scheduled staging techniques. Furthermore, it optimizes the throughput to and from data clients
as well as smoothing the load of the connected disk storage nodes by dynamically replicating files upon the
detection of hot spots. The system is tolerant against failures of its data servers, allowing administrators to
go for commodity disk storage components. Access to the data is provided by various ftp dialects, as well
as by a native protocol (dccp), offering regular file system operations like open/read/write/seek/stat/close.
The dCache name-space (pnfs) from the user perspective looks like any other cross mounted file system.
The dCache name-space, called PNFS (Perfectly Normal File System) is a virtual file system that imple-
ments and simulates the tertiary storage name-space. It provides two services for dCache. Firstly it serves
as mountable file system presenting the file repository. Secondly it’s used by dCache as meta-data database

2.5. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 17

for the file entries. This is done, by keeping the complete information in a relation database.
This implies that user doesn’t need to know where a specific file is located physically. The system is main-
tained centrally and thus eliminated the work to be done by local system administrators while at the same
time can be tuned to the need of the experiments or user groups. Since dCache is a distributed system
which serves a number of disks, users, tuning will significant improve the performance of the system.

Requests to dCache may come from command-line tools like dccp or from client integrated into ROOT
[28], [29]. In both cases the dCache manager is contacted through an interface called the dCache ”door”.
The dCache manager determines the best source or destination pool or tertiary storage for the request and
contacts selected pool. Finally client reconnects to the selected pool.

The pool is responsible for a contiguous disk area:

• It monitors disk space

• It holds a list of files

• It initiates the file copy process to and from tertiary storage

• It connects to data clients for the data transfer

• It monitors the total bandwidth to and from the disk area and adjusts the maximum number of movers

Clients send requests for a data file to mentioned ”door” of dCache system. A door is a network server
which performs user’s authentication and forwards client requests to the pool managers. There can be more
than one type of door to a dCache system, each potentially handling a distinct authentication mechanism
and each perhaps residing on a separate host. The concept of Doors allows having multiple instances of
one same kind of door running on different hosts for load sharing and failing safeness. On the of the door
implementation is an implementation of the Storage Resource Manager protocol (SRM) allowing to share
data with other storage fabrics on the grid.

The figure 2.6 shows dCache architecture and handling of a request. In this figure, we have represented the

Client Door

Pool N

Primary
Admin

Monitoring

PnfsManager

HPSS

PNFS

postgresqlopen

Q: Filepath?
A: PnfsId

Q: Where is file?
A: Pool N

file tape librarydisk pool N

1

2

5

4

37

913

12

6

10

14

client OK
dcap protocol

8

11

dcap protocol

Single point of failure

Si
ng

le
 p

oi
nt

 o
f f

ai
lu

re

Admin node Performance bottleneck

Figure 2.6: dCache architecture overview with single point of failures

architecture and highlighted 2 main single points of failure as well as one performance bottleneck. Each
request needs to communicate with the admin node which contacts the pnfs manager to obtain meta-data
information of a file and also the location of a file within the pool. Holding one admin node with each dCache
sub-systems is very dangerous and represents single point of failure. The performance bottleneck resides
in the fact that pnfs database is implemented as a relational database with a limitation of scalability and
performance. This performance hit has been observed in dCache deployments composed of large number of
clients.

2.5.2 Scalla (Structured Cluster Architecture for Low Latency Access) system

The previous solution has proved that relying on complete knowledge of where every file resides in the system
(i.e. shape of comprehensive internal catalog component) is not generally a scalable and a high performance

18 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

solution. The management overhead of meta-data and location of data is significant and dependent in some
way on the size of the repository.
Moreover, a distributed data access architecture based on the concept of centralized catalog (PNFS in
dCache) is more exposed to the risk of having an additional single point of failure for the whole system.
This leads to another type of solution: adopting a ”publish model”.
It inheres on the view that users can write using appropriate system and then publishes the file for read
access. Once file is published it can be only deleted, never replaced with identically named file with different
content. This model corresponds quite well to the environment of handling scientific data: write once,
publish, and read many times. One can easily imagine that the publishing of a file can be achieved with
external processes such as the STAR File Catalog [30]. Externally, the performance of the catalog could be
easily achieved by making the database distributed among multiple servers and load balanced. It is however
disconnected from Scalla so both components could be self reliable and eventually improved.

All requirements listed at the beginning of this section and additional requirement of external cataloging
complies to the Scalla also known as xrootd [3], [21], [25], [31], [32]. Its architecture allows the construction
of single server data access sites up to load balanced environments and structured peer-to-peer deployments,
in which many servers cooperate to give an exported uniform name-space.

One of the basic component of the system is a daemon called xrootd. The main purposes of this component
are:

• An implementation of the functionalities of a generic file server (such as open, read, seek etc.) and
therefore providing byte level access to any type of file

• An implementation of the extensive fault recovery protocol that allows data transfers to be restarted
at an alternate server

• An implementation of a full authentication framework

• An implementation of an element that allow xrootd servers to be clustered together while still providing
a uniform name-space

• A communication optimizations such as handling of asynchronous requests, network scheduling and
thread management

While the xrootd server was written to provide single point data access performance with an eye to robust-
ness; it is not sufficient for large scale installations. Single point data access inevitably suffers from overloads
and failures due to conditions outside the control of one server.

The approach to solving this problem involves aggregating multiple xrootd servers to provide a single storage
image with the ability to dynamically reconfigure client connections to route data requests around server
failures. Such an approach can work as long as servers are not independent. That is, servers can be ag-
gregated and a failure of any server can not affect the functioning of other servers that participate in the
scheme. This model is close in philosophy to the one of the peer-to-peer [33] systems which have shown to
be extremely tolerant of failures and scale well to thousands of participating nodes. The second component
of the Scalla system is a daemon called olbd (Open Load Balancer Daemon). It is a specialized server that
can provide information to the xrootd server and steer clients toward appropriate servers (least loaded). In
essence, the whole system consists of:

• A logical data network (the xrootd servers)

• A logical control network (the olbd servers)

The control network, as shown in the figure 2.7, is used to cluster servers while the data network is used to
deliver actual data to the clients. The definition of a node in the Xrootd system is a server pairing a xrootd
with an olbd. The olbd can assume multiple roles, depending on the nature of the task. In a manager role,
the olbd discovers the best server for a client file request and co-ordinates the organization of a cluster. In
a server role, the olbd provides sufficient information to its manager olbd so that it can properly select a
data server for a client request. A server role of olbd is essentially a static agent running on a data server
node. In a supervisor role, the olbd assumes the duties of both manager and server. As a manager, it allows
server olbds to cluster around it, aggregates the information provided by the server olbds and forwards the
information to its manager olbd.

As shown in the figure 2.8, the system is organized into a B-64 tree structure, with a manager olbd
sitting at the root of the tree, sometime called redirector. The redirector tasks is essentially to redirect

2.5. DISTRIBUTED FILE SYSTEMS FOR HENP ENVIRONMENT 19

olbd manager olbd server

Xrootd

data

olbd server

Xrootd

data

Host y Host x Host z

Client

Xrootd

5

1

2

3 3

4

Data network

Control network

Figure 2.7: Schematic interaction of xrootd and olbd

client to xrootd data-servers. A hierarchical organization of 64 size cells provides the ability of using fast
64-bit operations for selecting a server in a sub-tree. Additionally, it scales well with minimal message
overhead being broadcasted to all servers.
By simple formula, two-level three (1 level of supervisors and 1 level of data-servers) can route up to
642=4096 servers. One can start to argue, that this number could be reached at some point. To pretend any
server limitations, xrootd offers ability to have multiple supervisor levels in the tree. For example three-level
tree seen at the figure (2 levels of supervisors + 1 level of data-servers) can route up to 262,144 servers. This
number can be consider as human management limit of such amount of hardware at one place. However,
theoretically the architecture design can serve infinite number of servers.
Initially, each node contacts the manager and requests a service slot. If the manager is full (i.e., already
has 64 nodes reporting to it), it redirects the incoming node to the supervisor nodes that are currently
subscribed. The redirected node then attempts to find a free slot at one of the supervisor nodes. Full
supervisors will, in turn, redirect the incoming node to their supervisor son nodes. Supervisor nodes have
priority over server nodes and displace any server node occupying a slot in a fully subscribed node. This
algorithm builds a tree that spans all the nodes and practically configures the nodes into a B-64 tree of
minimal height with supervisor nodes placed as close as possible to the manager node.

One may suggest that the root node of the tree is a single point of failure in the whole architecture.
However and in order to provide full redundancy, multiple redirectors could be trivially set up with fail-over
mechanism. Moreover, one can easily set up a DNS round robin mechanism over multiple redirector nodes
to provide uniform access for clients and also providing load balancing at the root level of the tree being
several times cloned. In this case, each supervisor has to connect to each manager at the root head to create
connection mesh environment as shown on the figure 2.9, where DNS round robin serves as a simple load
balancer between redirectors. This makes Scalla an excellent high-performance, extremely fault-tolerant and
scalable solution for serving STAR physics data with no single point of failure.

The DataCarousel component seen on the figure 2.9 will be later described in section 3.5. It serves the
purpose to coordinate the requests which would otherwise be initiated from all dataservers within the
Scalla/Xrootd architecture. As treated in [30], this may lead to a collapse of the mass storage hence this
component was introduced in our deployment. Particular implementaion details of the datacarousel inte-
gration can be found in the appendix B.

The deployment and integration of Scalla/Xrootd into STAR offline framework is not explained in any
chapters of the thesis, but we rather point a reader to already published article [30] or un-published re-
port [34]. Our intent is to give detailed illustration of several studied taken in order to tune the system for
the best performance and usage.

20 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

RD

64 nodes

64

SP

SP SP
64 nodes

DS DS DS DS
64

SP

SP SP
64 nodes

DS DS
64

DS DS
64

Redirector

Supervisor

Dataserver

Figure 2.8: Example of B-64 tree structure used for clustering xrootd servers

2.6 Integration of Scalla/Xrootd with Storage Resource Manager

While the Scalla seems to perform extremely well and satisfy STAR’s most immediate needs, such as a
storage solution serving high-performance, scalable, fault-tolerant access to their physics data, it could itself
be improved and extended.

For example, Scalla does not move files from one data-server to other data-server, but always restore files
from MSS. This may be slow and inefficient in comparison with transferring the file from other node or
cache, not involving any tape mount or other delays intrinsic to MSS. Additionally, the system is not able
to import files from other space management systems (as dCache, Castor [35]) or even across the grid. In
a large scale pool of nodes, if ”ALL” clients ask for a file restore from MSS, the system would exhibit a
lack of coordination of accesses MSS resources as it lacks a request queue. This advanced feature is needed
for any coordinated requests and is especially important in a shared access environment where other tools,
such as bulk data transfers to remote sites, may also perform MSS staging requests. There are no advanced
reservations of space, other users can collate the space in the meantime while the restore from MSS oper-
ation is still ongoing (in fact, we have observed and reported in [34] failures related to the lack of space,
likely related to such timing issues). There are no extended policies per users or role based giving advanced
granting of permissions to a user. There is no concept of pinning the files or file-lifetime, requested files can
be evicted to release a space. This makes un-practical additional features such a pre-staging (essential for
efficient co-scheduling of storage and computing cycles).

In addition, there are other middle-ware designed for the space management and only for the space manage-
ment. Specifically, the grid middle-ware component called Storage Resource Managers (SRMs) [36],
[37], [38] has for function to provide dynamic space allocation and file management on shared distributed
storage systems. SRMs are designed to manage space, meaning designed to negotiate and handle the as-
signment of space for users and also manage lifetime of spaces. In addition of file management, they are
responsible for managing files on behalf of user and provide advanced features such as pinning files in storage
till they are released or also even manage lifetime of files that could be removed after specific time. SRMs
also manage file sharing with configurable policies regulating what should reside on storage or what to evict.
One of the powerful features of SRMs is ability of bringing the files from other SRMs, local or at remote
locations including from other site and across the Grid . In fact, SRMs defines a fully specified protocol
aims to handle and negotiate requests and movements. Note that SRMs themselves do not move files: they
negotiate space and orchestrate file movements using standard transfer tools (ssh, gsiftp, bbftp for example)
and it keeps a track of transfers and recover them from failures.

SRM has to be conceived as revolutionary protocol defining standard for communicating and sharing infor-
mation over various storage systems (differential by architecture design, feature capabilities or even hardware
structure etc.)

2.6. INTEGRATION OF SCALLA/XROOTD WITH STORAGE RESOURCE MANAGER 21

Supervisor

First 64 servers Next 64 servers

Supervisor Supervisor

Next 64 servers

Redirector layer

Supervisor layer

Dataserver layer

Up to 64 nodes

DNS round robin

MSS layerHPSS

DataCarousel layer

Coordinates requests
(Sorting, re-queuing failures, ...)

Getting list of files to stage
(effort to be on the same tape)

DataCarousel

Figure 2.9: The Xrootd overview with DataCarousel integration

We understand the term “SRM-aware storage solution” as a software suite implementing particular version
of SRM protocol. By this time, there are various implementations of SRM protocol (names correspond to
implementation of version 2.2):

� CASTOR - CERN Advanced STORage manager [35]

� DPM - Disk Pool Manager [39]

� dCache [2], [22], [23], [24]

� StoRM - Storage Resource manager [40]

� BeStMan - Berkeley Storage Manager [41]

The BeStMan implementation has been chosen as the implementation of SRM protocol fully satisfying re-
quirements mentioned above and the most suitable implementation with exactly distinguish components of
appropriated functionalities.

On the other hand, while BeStMan does manage space efficiently and can talk to other SRM implementa-
tions (bringing for example files from other caches or SRM-aware tools), they know nothing of load balancing
capabilities and they do not perform data aggregation or provide any global view of storage space, all of
which was showed as a key advantage of Scalla/Xrootd system. We therefore proposed to leverage these
technologies and integrate to Scalla/Xrootd and SRM back-end for managing space. [30]

22 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

2.6.1 Architecture integration overview

This section devotes to the architecture overview of the integration, namely from two aspects:

� Cluster architecture

∗ shows individual relations between components of Scalla system as well as their interaction with
SRM processes

� Components architecture

∗ shows bindings of particular components of Scalla suite with SRM middle-ware components

Both following sections will give an overview on how both systems will cooperate together and which
process is particularly responsible for what in the entire integration architecture as well as how components
of individual systems communicate together and share information.

Cluster architecture structure

From the cluster architecture perspective, Scalla/Xrootd system becomes responsible for managing the disk
cluster (seen for example on the picture 2.9), creating and maintaining global name-space spread over several
mutually independent nodes, making load balancing decisions in case of multiple replicas of a file or choosing
a node in case of staging request from MSS, handling requests from client, queuing or recover them in case
of failure etc.

The BeStMan responsibility will rely on managing the disk cache as for example allocation of a space
for newly incoming files, creating/releasing pin for a file being used/unused, making purging decisions in
case of multiple possibilities and strategies etc. The dedicated BeStMan server (replacement of DataC-
arousel) will become responsible for managing the MSS such as coordinating requests to unique system,
sorting requests according to multiple strategies (tape sorting, user priorities etc.), queuing requests and
recover them in the case of failure.

Along the figure 2.7 each server runs:

� olbd daemon for clustering, load balancing decisions etc.

� xrootd daemon for protocol handling, file operations, network scheduling, thread management etc.

� BeStMan daemon for cache management such as space allocation, pinning of a file etc.

The already mentioned specialized node with BeStMan server that is able to manage HPSS has GridFTP
[42] server running for secure transfer from the cache of this specialized node into BeStMan cache on a
particular node. The transfer can be even performed over wide-area network where the BeStMan resides on
the other site and utilizing the advantages of GridFTP in optimizations of WAN transfers.

Components architecture structure

Both systems have their own inner architecture and the task of integration lies on the question on how to
bind them together. The Scalla system (exactly xrootd server) has its own internal structure shown in the
figure 2.10(a).

xrd

xroot

ofs authorization

oss

fs

authentication
XROOTD

MSS

odc Optional
(included in
distribution)

Protocol and Thread Manager

Protocol Layer

Filesystem Logical Layer

Filesystem Physical Layer

Filesystem Implementation

Application

(a) Components architecture of xrootd server

xrd

xroot

ofs authorization

oss / srm

BeStMan

authentication
XROOTD

odc Optional
(included in
distribution)

Additional

Application

(b) Xrootd server with Berkeley SRM implemen-
tation

Figure 2.10: The overview of binding the Scalla and SRM components

2.6. INTEGRATION OF SCALLA/XROOTD WITH STORAGE RESOURCE MANAGER 23

It is composed of multiple components, each component serves a discreet task:

� xrd - provides networking support, thread management and protocol scheduling

� xroot - implements the xrootd protocol

� ofs (open file system) - serves as multi-component coordinator (odc, oss)

� odc (open distributed cache) - has main task to communicate with olbd through the file socket

� oss (open storage system) - provides access to the underlying file system (actual I/O, meta-data
operation)

� acc (access control) - consists of the two separated sub-components:

? Authentication - provides the verification of the identity of a person

? Authorization - grants an access control privileges to the user

Fortunately, this flexible layered component architecture and interfaces [3] allows us to easily replace one
implementation of the storage access by another incorporating SRM protocol as it is showed in the fig-
ure 2.10(b).

It is obvious from the figure 2.10 that the most important component for the integration is the oss compo-
nent responsible for providing access to the underlying file system. It is invoked by the ofs component to
perform actual I/O as well as execute file system mete-data operations (e.g., rename, remove, etc).
The difference between the phrase file system and storage system is that a storage system provides access
to stored data that may or may not be reside in an actual file system. For instance, the file may reside in
a Mass Storage System (MSS) and will need to be retrieved prior to the access. Alternatively, the file may
resides on another xrootd server and a proxy/redirection capability will need to be established in order to
provide an access. In all cases, the actual act of providing access to data is handled by the oss.

Therefore, the oss component was externalized as a plugin offering easy overwriting the actual meta-data
and data access calls (such as Open, Create, Stage, Close etc.). We have introduced new plugin called
OssSrm containing derived classes of the oss base classes, where methods contain direct calling of BeStMan
client API methods. For instance, following examples demonstrate the logic:

� Create() - uses BeStMan to create a file (allocation, pinning the file)

� Stage() - uses BeStMan to retrieve a remote file from MSS

� Open() - informs BeStMan that the file is in use (i.e. pinning of the file)

� Close() - informs BeStMan that the file is no longer in use (i.e. releasing the pin of the file)

As can be seen, using this approach gives a full flexibility to provide all necessary features cited at the
beginning of this section.

2.6.2 Creating uniform name-space

From a basic perspective, all data accesses systems, file systems or storage solutions must provide a way to
store the information or content of a ”file” and a way to retrieve that data using a reference. In its simplest
form, a file stores a piece of information. A piece of information can be a bit of text (e.g., a letter, program
source code, etc.), a graphic image, a database, or any collection of bytes a user wishes to store permanently.
The size of data stored may range from only a few bytes to the maximum size of the file limited by the
particular file system. For a structure imagination, a file could be presented and expounded as a ”stream of
bytes”.
A file system also stores separately information related to the ”file”; these information constitutes the file
system ”Meta-data”. As a general definition, Meta-Data is usually anything which characterize one (or
more) ”file”. For a file system, there are several pieces of information about a file which are meta-data: for
example, the owner, security access controls, date of last modification, creation time, and size which belongs
usually to low-level file system operations. Since meta-data is not uniquely defined, in the scientific physics
world, as meta-data we also count information such as: production series, the collision, the beam energy
and any external conditions. Sometimes, information such as number of events or the ”triggers”, accessible
by inspecting the content of a file, are also defined as meta-data for easier definition of collection of files (or
data-sets).
One can imagine, that a file can have multiple copies and we refer them as ”replicas”. Therefore, in

24 CHAPTER 2. STORAGE REQUIREMENTS, TOPOLOGIES AND TECHNOLOGIES

data management, one defines a unique result of meta-data query as Logical file name (LFN), and
speaks of a ”LFN space”, while the physical nature or occurrence of a file are Physical file name (PFN)
defining a ”PFN space” with many replicas of a file. The relationship between LFN and PFN is 1:N,
where N is greater or equal one. LFN is globally unique for a given data-set. Thus, the data-set is
usually the first part of the LFN. It is a choice of the data-set designer how to assign these names. If
the files are organized in directories then the directory names are part of the LFN. An example of LFN is:
“reco/productionMid/ReversedFullField/P05ic/2004/065/file1.root”. Examples of PFN can be:

� /tmp/reco/productionMid/ReversedFullField/P05ic/2004/065/file1.root

� /home/reco/productionMid/ReversedFullField/P05ic/2004/065/file1.root

In general, a name-space is an abstract container providing context for the items (names, or technical terms,
or words). Within a given name-space all items must have unique names, although the same name may be
used with a different meaning in a different name-space.

In the file systems, the name-space is a directory. It contains several files which must have unique name
within one directory (this is a physical limitation of standard file systems). However, one can imagine that
a particular tree starting from a root prefix /xxx could be cloned (copied) to a different device starting from
a prefix /yyy. While from a file system perspectives, the two trees together forms an aggregate name space
itself a name space, files are nonetheless identical one level up down in the tree starting from either /xxx
or /yyy. For all practical purpose, /xxx/A and /yyy/A may canonically be part of the ”same” name-space
(there is a unique transformation between the two). In general, the same name can reside in different direc-
tories located on one physical device or machine within separate base-path. In UNIX world, the mounted
directories are many partitions representing physical devices (such as HDD) being attached to one machine.
In global view, the fun of creating a name-space is represented by many physically independent machines
within the one farm. For instance, if a farm has 1000 nodes, where each node has exactly 3 physical drives,
there would be 1000 * 3 possibilities to place a file and therefore 3000 fundamentally diverse name-spaces.
This could be collapsed to one unique name space by creating a transformation such as, making all separate
tree appear as the same (in the same manner that stripping /xxx and /yyy would make a new A/? unique
name-space).
A distributed file system has to create a single uniform name-space as, this would allow removing the need

/data0
/data3

/data2/data1

symlink
symlink symlink

symlink

/home/starlib

Name-space: /home/starlib
Data-space: /data*

Figure 2.11: The single name-space within one node

to know the hardware layout detail, mount path, names to device or node name, and therefore decrease the
number of entries in a replica catalog while providing everything would be transparent to a user. But for
the distributed data management system, this means that a file A would need to be checked against each
element of the local device i.e. /data0/A, /data1/A etc. To overcome a case of a single name-space within
one node, xrootd offers mechanism of using UNIX symbolic links managed by MPS module [43]. As shown
on the figure 2.11, each file has a record of a file name in name-space directory (in example /home/starlib)
and a record of a file content in data-space directories (in this case /data∗). Both of these records are
together grouped using UNIX symbolic links. This approach creates an option of having large data space
within single-name space at one node and reducing the number from 3000 possibilities just to 1000.

If one wants to further decrease the number of occurrence and create a single name-space spanning over all
nodes of the farm, it is convenient to use the concept of logical and physical files mentioned above.

The representation of logical file names may vary depending on the representation, one possibility is to
represent it as a MD5 sum of a file (name). The drawback of this solution is the fact that while LFN
could be stored in the Xrootd name-space in any form it first involves an additional internal operation (a

2.6. INTEGRATION OF SCALLA/XROOTD WITH STORAGE RESOURCE MANAGER 25

calculation, a catalog look-up for example) within each user’s request. The second problem is that if the
file is not found, it has to be fetched from the mass storage, which implies an additional transformation
of either the primary request to the HPSS name-space or of the stored Xrootd name-space LFN into the
HPSS name-space. The second alternative, is to use the LFN to match its physical location in MSS (shortly
PFN(MSS)); as a single, MSS system at one site by itself ensure the uniqueness of the name of a file (unique
tree). This solution offers ability to have many PFNs (xrootd server or MSS) under one reference (LFN)
without any name transformation operation when request is made. In other words, shall the user accesses
the Xrootd system using a LFN equivalent to the PFN(MSS), there would be only a trivial transformation
from the user to Xrootd (one related to path manipulation as explained with /data1, /data2 and so on) and
no transformation at all from the user’s request to the HPSS request.

This solution also has its drawback, which assumes that there is only one MSS within one site. This
becomes a problem when name-space may cover many sites spread over the world and with more than one
MSS (e.g. likely the SRM case).

Therefore, we have to provide and re-architecture xrootd for having generic and flexible LFN/PFN con-
version module with ability of different implementations. We designed the module as plug-able with the
interface containing methods such LFN2PFN or LFN2RFN, where RFN is a location of a file in MSS. This
change not only offers to use still the same logic as before, but also to create another logic applicable for
name-space covering many farms on different sites with more than one MSS.

In order to integrate Scalla/Xrootd in the STAR environment with the least disruption, we needed to
take into account the fact that ROOTD [30] was in use within STAR framework. Since ROOTD is in essen-
tially PFN based, we had to allow Scalla/Xrootd to understand both PFN-like access as well as LFN-like
represented by PFN(MSS). To achieve this goal, we could simply re-use and create an implementation of
the mentioned designed interface. The explanation of the implementation is given in Appendix A.3.

26

Chapter 3

Performance survey of tertiary
storage system

28 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

3.1 Synopsis

In this chapter, the key parameters of tertiary storage performance are studied and addressed. The theoret-
ical background and the explanation of key performance parameters is given as well as their proof of concept
in the real environment of the STAR/RHIC experiment context. The affect of the studied key parameters
has been examined STAR’s tertiary storage system called HPSS [16].

The improvement realized on one of the key parameters within the Scalla/Xrootd architecture is presented
as well as the benefits to the physicists using Scalla system to access STAR data. The results and conclu-
sions from this performance survey is further used in the design of scheduling algorithms as well as their
evaluation presented in follow-up chapters.

3.2 STAR analysis scenario

At STAR, the usual analysis is performed with the help of software called SUMS (STAR Unified Meta
Scheduler) [44]. Each user has to describe its intent to perform a task with the special language. Examples
of intent can be: an input file or dataser used by the task, a location to store the output of the task, a
program which will be used for processing etc. The input to the task can be specified as a list of files or
using the meta-data query (energy, collision etc.) to the STAR File catalog [34], [30] which resolves this
query into particular physical data-sets.

According to the user’s specification, SUMS splits the datasets accross all jobs and submits the individ-
ual jobs into the preferred batch system queue. As one can imagine, there must be a limitation of job’s
run-time to control resource sharing in such multi-user shared environment. The usual practice to limit
user’s job run-time is having a hard limit on clock time. In simply way, this means that the job is killed
when it has exceeded a predefined value.

This comprehensive finding comes to a problem when a user accesses a file from the tape system within a
job. Delays are highly expected and when the access and performance is not efficient enough, the job is
killed sooner or later.

From our observation and usage at STAR, the average time to restore one file from the tertiary storage
system is about ∼ 21 minutes. By simple counting, when a user requests 1000 files, the time period is equal
to 350 hours. This number is almost impossible to adjust as a hard limit in a such multi-share environment
where resources have to be fairly allocated among the users. What about jobs requesting more than 1000
files ?

This indication has initially led to study the performance of the tertiary storage system. One of the next
facts confirming the need for studying key performance parameters is the plot showing performance of the
system DataCarousel [34], [30] being used for the efficient management of the unique system shared among
many users requesting concurrently files from this system.
The figure 3.1 shows performance in megabytes per second in relation to time range for the 44th week of

2006. The details of this measurement are given in Appendix A.1.1.

As can be observed from the figure 3.1, the performance of STAR’s HPSS resources is in average about
6 MB/s. The STAR’s HPSS setup contains 1 nine 9940b tape drives. As we explained in section 2.4, the
theoretical limit for a one tape drive depends on the drive technology being used as well as on the usage
pattern of the tape drive. By usage pattern, we mean how long are data sustainably streamed from the
tape without being unmounted to satisfy another request for a file located on different tape or without a
time-consuming seek needed to move to other file positioned further in the tape.

The table 3.1 summarizes all types of drives available at STAR’s setup [45], [46]. Most of the STAR files

Table 3.1: STAR’s tapes summary
Type of tape drive 9940b LTO-3
Max transfer speed 30 MB/s 80 MB/s
Data occupancy (Ratio of STAR’s files) 98% 2%
Data layout linear serpentine linear serpentine

1STAR is currently using other tape drive technology. Although, numbers stated here are correct values for the time of
those observations.

3.3. KEY PARAMETERS OF THE TAPE SYSTEM PERFORMANCE 29

Figure 3.1: Performance of DataCarousel, Week 44

(around 98%) are located on 9940b tapes where 9 tape drives corresponds to the theoretical data through-
put of 270 MB/sec (number of tapes * max transfer speed for 9940b drive). Indeed, this theoretical limit
cannot be achieved in real environment, but a half of this limit is very feasible [47]. The measured 6 MB/s
throughput compared to calculated achievable theoretical limit is far behind the expectation.

All these observations call for studying key parameters how to optimize and tune performance of the tape
system.

3.3 Key parameters of the tape system performance

Several studies exists treating on how the performance of the tape system can be increased and its key
parameters influencing the efficiency [47], [48]. From those studies, there are several factors which directly
affect the performance of an one tape drive, but also parameters implicitly influencing the overall aggregate
performance of the entire tape system.

Amongst these factors, the following items are considered:

1. the measured maximum theoretical performance value per one tape drive (e.g. values obtained from
the table 3.1: 9940b ∼ 30 MB/s or LTO-3 ∼ 80 MB/s)

2. the coupling of a tape drive to a disk storage cache and its maximal data throughput and performance

3. the access pattern defined by the user application and its disposal on the efficient management of
multiple tape drives

4. the length of uninterrupted streaming of a file from/to tape and per file overhead on the seeking
through the tape, both of which are affected by the file size

The first testifies about theoretical limit of a tape performance which is not possible to overcome under any
magic circumstances. For the STAR case this is mostly 30 MB/sec per tape drive since 98% of files are
located on 9940b tapes.

The second consideration gives a small efficiency gain, since most raid arrays of disks [7] have higher or
comparable theoretical data throughput limit as one tape drive or more. This point comes into a game
when a setup starts to have several tens of tape drives. This type of situation is neglected in our calculation
model.

Hence, our interest is focused on last two bullets which are influencing the performance at most and are

30 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

directly connected to the usage of the system rather than to a configuration of the system itself.

The figure 3.2 shows two most important key parameters of the tape drive performance:

• the size of the file

• the number of files restored per tape mount

In the following subsections, both key parameters are explained along with their affects on the overall per-
formance. First of all, a theoretical model studied over past few years in other types of HSMs is presented
as well as the proof of this model in our environment.

The figure 3.2 shows the theoretical model which we tried to prove in STAR environment and using STAR’s
resources (i.e. HPSS). This proof has been obtained by submitting, running and gathering several tests
targeted on both parameters. All results are appended and explained along the following subsections.

We omit to explain any implementation details of those measurement in the following subsections and
rather placed them in Appendix A.1.3.

3.3.1 File size parameter

The first parameter affects per file overhead and it is related to seeking through the tape, partly due to
the time it takes to read/write two file-marks between files (4-5 seconds) [47]. In order to overcome this
limitation, the file size should be such that the time it takes to read/write the file on tape is significantly
more than this overhead, say a factor of 10. For the 9940B tape drive, this is about 1 GB to 1.5 GB. For
LTO-3 tape drive, this corresponds to 4 GB [48].

Figure 3.2: File size and multiple files per tape mount vs efficiency of the tape system

As mentioned before, tape drives have a rate that they stream at, that is, they continue writing (reading)
at this rate without starting and stopping as long as data is written (read) at this rate or faster. A drive
will stop streaming to write/read a file-mark. Keeping a drive streaming provides the best rate possible and
does not wear the drive as much as the continual starting and stopping when not streaming.
A drive will not stream for very long time when small files are written to it, or if the rate of the file that is
being provided is slower than the drive theoretical maximum streaming rate. Below, the table 3.2 shows the

3.3. KEY PARAMETERS OF THE TAPE SYSTEM PERFORMANCE 31

average file size per file type in the STAR environment. All files are physics data where each of the file type
serves different purpose in STAR’s physics program. Some of the files are result of the simulation, some of
them are directly gathered by the STAR detector or are result of the raw data reconstruction process. The
rule which is being applied here is that files with bigger size are files that are result of simulation or direct
detector’s running process. Files with smaller file sizes are result of the reconstruction where physicists try
to keep the level of important data as low as possible.

Files which are being used for analysis are highlighted in red (MicroDST files) and its average size is
around ∼ 88 MB. One can easily distinguish from the figure 3.2 that by increasing the file size up to 1 GB,
the performance efficiency gain is 40%.

Table 3.2: Average file size seen at STAR as a function of the types of files
Average (bytes) Average (MBs) File type

943240627 899 MC fzd
666227650 635 MC reco geant
561162588 535 emb reco event
487783881 465 online daq
334945320 319 daq reco laser
326388157 311 MC reco dst
310350118 295 emb reco dst
298583617 284 daq reco event
246230932 234 daq reco dst
241519002 230 MC reco event
162678332 155 MC reco root save
93111610 88 daq reco MuDst
52090140 49 MC reco MuDst
17495114 16 MC reco minimc
14982825 14 daq reco emcEvent
14812257 14 emb reco geant
12115661 11 scaler
884333 0 daq reco hist

3.3.2 Number of files per tape mount parameter

In the section 2.4, it has been explained that an excessive changing of tapes between multiple drives esca-
lates intrinsic long latencies in delivering files to users. This is primarily imposed by loading a tape into
drive and the preparation for the streaming from this tape. It involves operations such as rewinding the
currently-loaded tape, ejecting it from the tape drive, robot’s arm movement to unload the old tape and
load a new one, reading servo information at the start of the new tape and finally the tape drive has to
perform a forward search operation to position the tape for reading or writing.

This second parameter of the performance is directly affected by the access pattern of the application
which requests files from/to the tape system. This becomes a main problem when a tertiary storage library
contains many tapes and the ratio of available tape drives for loading tapes in the system is very low.

Here, for simplicity, the application is considered as Scalla/Xrootd system. However, the access pattern
is far behind the system itself, users who perform the analysis are the ”generators” of the access pat-
tern. Moreover, the access pattern is defined partially by user’s intend of requested files, but also by the
Scalla/Xrootd system, since the system can have some of the files already located on the disk and thus
doesn’t need to access them on the tape.

By observing the empirical results listed in table 3.2, one can see that by increasing the number of files
per tape mount, the performance can be boosted by 35%. However, this scenario is not feasible in real world
production of huge amount of data and files spread over many tapes.
The most likely number is 10 files per tape mount which corresponds to 10 % gain of performance efficiency
upon 88MB size of files. However, the growth sharply accelerates when the size increases and the perfor-
mance efficiency is together more than 60%.

32 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

3.4 Evidence of the key parameters influence on the tape system’s
performance

3.4.1 Monitoring key parameters in relation to performance

We have built a set of monitoring plots to monitor the efficiency of multiple files per tape and the size of
the file in the relation to the performance of the HPSS system. The monitoring set combines values from
production database of HPSS system and DataCarousel database. It gives an illustration of mentioned
parameters in relation to the performance and time statistic of hours, days and weeks.

It helped us to understand key parameters when performed multiple tests that varied on different file
size and multiple files per tape mount. Examples of monitoring plots are showed in figure 3.3 where we
monitored the DataCarousel performance (3.3(a)), the performance as a function of files size (3.3(d)), the
performance as a function of number of files per tape mount (3.3(c)) and performance as a function of both
parameters: file size and number of file per tape mount (3.3(b)). In the following section, we will explain in
detail the content of some of the plots.

The implementation details of this measurement can be found in appendix A.1.3.

(a) DataCarousel performance (b) DataCarousel performance vs file size and # files per
tape mount

(c) DataCarousel performance vs # files per tape mount (d) DataCarousel performance vs file size

Figure 3.3: Set of plots to monitor key parameters

� Figure 3.3(a) shows Performance of DataCarousel system

? x-axis is a time per hour, day or week

? y-axis is a performance measured in MB/s

? purple color shows the performance of the system

� Figure 3.3(b) shows Performance of DataCarousel system in correlation of 2 key parameters

? x-axis is a time per hour, day or week

? y-left-axis is a performance measured in MB/s

? y-right-first-axis is number of files per tape mount (number of files is the unit)

3.4. EVIDENCE OF THE KEY PARAMETERS INFLUENCE ON THE TAPE SYSTEM’S
PERFORMANCE 33

? y-right-second-axis is size of the file (in MBs)

? yellow background color shows the performance of the system

? red line shows average size of the file

? green line shows average number of files per tape mount

� Figure 3.3(c) shows Performance of DataCarousel system in relation to min, avg and max
number of files per tape mount

? x-axis is a time per hour, day or week

? y-left-axis is a performance measured in MB/s

? y-right-axis is number of files per tape mount (number of files is the unit)

? yellow background color shows the performance of the system

? blue line shows minimum number of files per tape mount

? green line shows average number of files per tape mount

? red line shows maximum number of files per tape mount

� Performance of DataCarousel system in relation to min, avg and max file size 3.3(d)

? x-axis is a time per hour, day or week

? y-left-axis is a performance measured in MB/s

? y-right-axis is size of the file (in MBs)

? yellow background color shows the performance of the system

? blue line shows minimum size of the file over all requested files

? green line shows average size of the file over all requested files

? red line shows maximum size of the file over all requested files

3.4.2 Performance parameters analysis

The figure 3.2 shows that by increasing the file size, the efficiency can be boosted at maximum by 40 %
corresponding to 9940b tapes and 1GB files. The efficiency is defined as:

Efficiency =
throughput

nspeed
[%]

where

throughput = current measured speed (MB/s) of all contributive tape drives
nspeed = native (maximum) transfer speed (MB/s) of all contributive tape drives

Our goal and intent in this section is to show a proof of this finding in our setup of the tape system (HPSS).
The table 3.1 summarizes that the 98 % of STAR files are placed on 9940b and just 2% on the LTO-3
tapes. This has been faithful statement during the initial studies of the HPSS inefficiency. However, in the
meantime of the initial studies and the time of this measurement, the STAR has transferred almost all files
to LTO-3 tapes.
Therefore, all results seen in this section correspond to the LTO-3 tapes, i.e. maximum transfer speed is 80
MB/s per one LTO-3 tape drive with reference to the table 3.1. The number of available tape drives in the
STAR setup is equal to 7, i.e. the parameter nspeed is equal to 560 MB/s.

In order to see an impact of different sizes of requested files, 3 independent tests has been realized that
varied in the average size of requested files. The second parameter of number of files per the tape mount
was fixed during these tests. This means that the number of files per any tape mount had the same value
equal to 15 files. In respect to the table 3.2, 3 different file types has been chosen to satisfy the needs of 3
independent data-sets varying in different file sizes.

Following file types have been chosen:

� daq reco MuDst with average file size of 90 MBs

� daq reco event with average file size of 500 MBs

34 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

� MC fzd with average file size of 1500 MBs

The figure 3.5 demonstrates the results of our tests. Three yellow peaks show different results in the
performance along with the varying red curves of average file sizes (green curve is equal to already mentioned
value - # files per tape mount equal to 15).

Figure 3.4: The three independent tests varying in the average file size

The set of figures 3.5 shows details for each of the measurement (different file size). The fluctuations of
number of files per tape mount is counted to the small time bins where the average over multiple drives is
being decreased along the process of transferring files from each of the mounted tape.

(a) Performance vs 90MB files

(b) Performance vs 500 MB files (c) Performance vs 1500 MB files

Figure 3.5: Details of each of independent measurement

From the above, the following bullets conclude our measurement:

• 80 MB ⇒ 2 % of efficiency

3.5. EFFECT ON INCREASING THE NUMBER OF FILES PER TAPE MOUNTS 35

• 500 MB ⇒ 12 % of efficiency

• 1500 MB ⇒ 26 % of efficiency

More details of this measurement are given in Appendix A.1.4.

Based on the results and influence of the file size on the performance, our recommendation is to increase the
file size of the physics analysis format. While increasing the file size of already reconstructed and produced
data is not an easy procedure and cannot be improved within the Scalla/Xrootd system, our concern is
re-focused on the improvement of the second parameter - number of files per tape mount.

3.5 Effect on increasing the number of files per tape mounts

It has been explained and demonstrated that the performance of the tape system can be easily improved
by increasing the size of requested files or by elevation of multiple files per tape mount. While the size of
requested files cannot be increased under any circumstances from the application, there exists a possibility
on how to increase the second parameter of multiple files per tape mount. This second parameter is directly
linked with the usage pattern of the application as we explained in section 3.3.2.

The outline is now following, the quick introduction of how the request is passed from the Scalla/Xrootd
system to the HPSS tape system, explaining the drawback of multiple requests behavior, explanation of the
solution and at the end the results.

The Scalla system uses another software tool to manage the access to HPSS, it is called ”DataCarousel”.
The integration of this tool within Scalla architecture is well described in [34], but the description of this
system in more details is needed for further understanding.

The DataCarousel (DC) is an HPSS front end which main purpose is to coordinate requests from many
un-correlated client’s requests. Its main assumption is that all requests are asynchronous that is, you make
a request from one client and it is satisfied ”later” (as soon as possible). In other words, the DC aggregates
all requests from all clients (many users could be considered as separate clients) and re-order them according
policies, and possibly aggregating multiple requests for the same source into one request to the mass storage.
The DC system itself is composed of a light client program, a plug-and-play policy based server architecture
component and a permanent process interfacing with the mass storage using HPSS API calls. The client
and server interacts via a database component isolating client and server completely from each other.

Policies may throttle the amount of data by group (quota, bandwidth percentage per user) but also perform
tape access optimization such as grouping requests by a tape id (for equivalent share, all requests from the
same tape are grouped together regardless of the time at which this request was performed or position in the
request queue). The DC submits K of those jobs before stopping and observing the mass storage behavior:
if the jobs go through, more are submitted otherwise, either the server stops or proceed with a recovery
procedure and consistency checks (as it will assume that no reaction and no unit of work being performed
is a sign of MSS failure). In other words, the DC will also be error resilient and recover from intrinsic HPSS
failures (being monitored). Whenever the files are moved from the tape to the cache in the MSS, a call back
to the DC server is made and captive account connection is initiated to pull the file out of mass storage
cache to more permanent storage.

Currently, the policy is based on satisfying following strategy which is the tape with the largest num-
ber of files requested. The second strategy is driven by user priorities where Scalla/Xrootd has the highest
priority over the other users, since all files are requested within waiting jobs.

To achieve efficient performance from/to tape system using DC, one needs to submit ”enough” long list
of files to allow creating reasonable sorting and queries according to the location of a file on the tape.

This is obviously in the clash with Scalla/Xrootd ”random” access and sequential processing of users list
of files. The figure 3.6 illustrates a case where two jobs compete for the same drive in HPSS drive due to
the sequential nature of the requests. This causes the system to perform an excessive number of tape mounts.

For simplicity, lets assume just single HPSS drive and two jobs, but there are always more then 2 jobs and
one HPSS drive in the real production scenario. Each of the jobs has list of files to be processed where the
files are likely on the same tape due to assumption that alphabetical order sorted by SUMS means files on
the same tape. Likely means that there is no confidence that files has to be on the same tape, HPSS doesn’t

36 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

1 drive of

HPSS

List of files (ideally files

from the same tape)

File 1 on tape 1

File 2 on tape 1

File 3 on tape 1

File 4 on tape 1

File 5 on tape 1

File 6 on tape 1

File 7 on tape 1

File 8 on tape 1

File 9 on tape 1

File A on tape 2

File B on tape 2

File C on tape 2

File D on tape 2

File E on tape 2

File F on tape 2

File G on tape 2

File H on tape 2

File D on tape 2

Job A Job B

Mount a tape 1 [File 1] 1

2

Mount a tape 2 [File A]

1

Dismount

tape 2

2

1

2

Reading from tape 1

Reading from tape 2

Mount a tape 1 [File 2]

Dismount

tape 1

Dismount

tape 1

Mount a tape 2 [File B]

Dismount

tape 2

1

Mount a tape 1 [File 3]

!!! EACH (MOUNT +

DISMOUNT) ~38s !!!

List of files (ideally files

from the same tape)

!! TO ACCESS A FIRST

FILE ON THE TAPE ~72s !!

Figure 3.6: Illustration of two jobs competing for a single HPSS drive

offer any attribute how to ensure that files reach the same tape. For the next explanation, lets also assume
that files on the list are presented nowhere in the Scalla system and need to be always requested from the
tape system.

First Job A requests its first file from the list, the ”Tape 1” is mounted for the ”File 1” and file is
read from tape to disk cache and transferred from cache to a node where the job can process the file.
Obviously, in the meantime where HPSS transfers the ”File 1”, the ”Tape 1” is dismounted to satisfy the
request of the second Job B where the ”Tape 2” is mounted for the ”File A”.

This situation is repeated for second files from lists and both jobs, the situation goes as follows:

1. mount ”Tape 1” for ”File 2”

2. dismount ”Tape 1”

3. mount ”Tape 2” for ”File B”

4. dismount ”Tape 2”
...

5. mount ”Tape 1” for ”File 9”

6. dismount ”Tape 1”

7. mount ”Tape 2” for ”File D”

8. dismount ”Tape 2”

From the pattern, it is transparent that the same tape is mounted and dismounted constantly during a fixed
period of time. As has been mentioned before, this is counted to the sequential processing where requests
are arriving to DC system one after one and the optimization of tape sorting is therefore inefficient, since
the list for sorting and making queries is too short.

Each of this excessive mount/dismount operation takes in average about ∼ 140 seconds for 9940b drive,
159 seconds for LTO-3 drive according to the formula 3.1 and the table 3.3. The table 3.3 illustrates access
times for the tapes available at STAR’s HPSS setup.

Overall file access time = load time + average file seek time

+ average rewind time + unload time (3.1)

Following bullets explain terms used in the table and formula.

3.5. EFFECT ON INCREASING THE NUMBER OF FILES PER TAPE MOUNTS 37

� Load time

? the amount of time required to insert a cartridge in the drive, load the tape and prepare to read,
write or seek

� Average file seek time

? the amount of time required to seek from the beginning of the tape to the midpoint of the tape
(it does not include load time)

� Maximum rewind time

? the amount of time required to rewind the tape from the end to the beginning of the tape (it is
required to rewind a tape each time before unload operation)

� Average rewind time

? the amount of time required to rewind a tape from the midpoint to the beginning, i.e. one-half
of the maximum rewind time

� Unload time

? the amount of time required to eject the cartridge from the drive

The overall access time that takes to access a file on a tape located in the library is computed according
to the formula 3.1. For simplicity, the robot arm operations such as robot arm movement, pick up of tape
from library shelf are not considered here. The entire model including robot arm operations is described in
the chapter 5.

Table 3.3: STAR’s tapes access times
Tape drive 9940b LTO-3
Release Date 2002 2005
Native Data Capacity 200 GB 400 GB
Max transfer speed 30 MB/s 80 MB/s
Recording format Linear serpentine Linear serpentine
Load time 18 sec 19 sec
Average file seek time 59 sec 72 sec
Maximum/Average rewind time 90/45 sec 98/49 sec
Unload time 18 sec 19 sec

A question here is: ”How we can increase the number of files for efficient sorting per tape in DC when
using Scalla system ?”. Evidently, there is a solution in form of publishing the whole list of files to the
system before starting to process them. This ensures the increment of files in DC and prevents the sequential
processing defect on the tape system.

For this purpose, new feature to our setup of Scalla system has been implemented called Pre-Staging.
It follows a concept of Scalla system, it has client and server side.

The client side is represented by a external script called before processing the files and it is responsible
for passing the files to the head node of the Scalla cluster. The script is the wrapper around xrootd/scalla
client’s libraries and passes the files to the server using ”prepare” protocol. The presence of each file from
the list is investigated on the cluster, missing files are scheduled to be retrieved from the tape system.

The server side is little bit complicated, since there is no client who manages and steers all requests through
the cluster. The cluster itself has to manage which files are already somewhere in the cache, where to put
new files, which of them are being retrieved, initiates a request to the tape system , monitor a state of the
request and also possible informs that files has been successfully transferred etc.

The best explanation of a work-flow is on a single request for a one file which is not presented on the
cluster. The file request is published to the head node of the Scalla cluster (called ”Redirector”), the redi-
rector broadcasts the message to all nodes if some of them has the file already presented in their cache. If
not, a server is chosen to be a target for the new file according to the load balancing criteria. From this
time, pre-staging differs from the handling of the normal request, because the client which has published
the list of files doesn’t follow the request directly to the node.

38 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

Instead of it, each server runs pre-stage daemon which periodically check a new request in predefined file.
This file serves a communication channel between two separated layers: open load balancing daemon and
staging capabilities. In fact, this allows using the same logic for staging capabilities in normal handling as
well in pre-staging. The separated daemon is responsible for re-queuing the failures, triggering the request,
managing the queue per node and also informing the client about successful transfer if needed.

Read a tape 1 [File 3]

1 drive of

HPSS

List of files (ideally files

from the same tape)

File 1 on tape 1

File 2 on tape 1

File 3 on tape 1

File 4 on tape 1

File 5 on tape 1

File 6 on tape 1

File 7 on tape 1

File 8 on tape 1

File 9 on tape 1

File A on tape 2

File B on tape 2

File C on tape 2

File D on tape 2

File E on tape 2

File F on tape 2

File G on tape 2

File H on tape 2

File D on tape 2

Job A Job B

Mount a tape 1 [File 1] 1

2

1

2

1

2

Reading from tape 1

Reading from tape 2

Read a tape 1 [File 2]

M
ount a

 ta
pe

2
[F

ile
 A

]

Dismount

tape 1

1

List of files (ideally files

from the same tape)

1

2

2

R
ea

d a
 ta

pe
2

[F
ile

 D
]

Read a tape 1 [File 4]

!!! WE GAIN ~100s FOR

EACH OF THE FILE !!!

R
ea

d a
 ta

pe
2

[F
ile

 C
]

R
ea

d a
 ta

pe
2

[F
ile

 B
]

Figure 3.7: A pre-staging effect on HPSS drive

The figure 3.7 shows the effect of the pre-staging feature on the HPSS drive. It assumes that all files
are not presented on the Scalla system cache. Since the client publishes the whole list before processing,
all files arrive to the system exactly at one point in time and the one tape can be efficiently used to satisfy
all requests from the same tape and therefore same job. Within this solution and example, the gain is
81 seconds per each of the file from the list for 9940b drive, 87 seconds for LTO-3 drive according to the
formula 3.2.

Saved time per a file = load time + file rewind time + unload time (3.2)

The reason for this formula is that we do not have to load, rewind and eject tape each time we access
a file from the same tape. We do it just one time per entire list of files from the same tape. According
to the illustrated example, we save in total for 9 files 12 minutes for 9940b drive, 13 minutes for LTO-3 drive.

The formulas 3.3, 3.4 illustrate overall access times for the list of files (assuming located on the same
tape) being processed within the ”Job A” demonstrates in the figures 3.6, 3.7 when using or not using
prestaging. We concentrate on the access time overhead and ignore the reading time in the formulas.

Overall access time for the list of files within Job A (no prestaging) =
of files of Job A∑
i∈ list of files

(load time i + file seek time i + file rewind time i + unload time i) (3.3)

Overall access time for the list of files within Job A (with prestaging) =

load time + maximum rewind time + unload time +
of files of Job A∑
i∈ list of files

file seek time i (3.4)

It is obvious that the access time latency of entire list of files evidently decreases when using prestaging.
The rank of latency improvement is counted in units of minutes as we demonstrated in example previously.

3.6. STABILITY AS ANOTHER DIMENSION OF THE EFFICIENCY 39

3.5.1 Improvement demonstration in real environment

In the following section, the results of the described improvement are presented. Clearly, the verification
of the explained theory in real experiment’s environment is not an easy task. As we mentioned previously,
the users are the “generators” of the usage pattern which means that significant proof of the theory greatly
depends on the workload of users.

We attempt to do it by monitoring the shift in the number of files per tape mount and also observing
its impact on the performance. Figure 3.8 shows a set of plots where on the left, the improvement before
(without pre-staging) is presented and on the right side, the same measurement is showed after (using
pre-staging) for user’s analysis of STAR’s physics data.

(a) Performance Before (b) Performance After

(c) Mounting efficiency Before (d) Mounting efficiency After

Figure 3.8: The comparison of using and not using pre-staging

It can be observed 100% improvement by comparing the plots 3.8(c), 3.8(d). This improvement is attributed
to the increase of the number of files per tape mount which can be seen in figure 3.8(c) and figure 3.8(d) as
the green curve.

3.6 Stability as another dimension of the efficiency

Increasing the performance of the tape system is one thing, but the stability of the unique system is another.
If the system is not stable enough, the better performance is useless. We have observed many failures due to
frequent collapses of HPSS. This is seen on picture 3.9 for week 42, where the errors are dominated by HPSS
connection failed or HPSS authentication failed. This observation is ascribed to frequent events where HPSS
would be left in un-stable state and typically preceded a total collapse and inaccessibility of the system. For
implementation details of this measurement, see the Appendix A.1.2.

40 CHAPTER 3. PERFORMANCE SURVEY OF TERTIARY STORAGE SYSTEM

Figure 3.9: Proportions of HPSS errors for Week 42, 2006

We identified this issue as related to the use of an HPSS meta-data program within the Scalla system.
This program obtained information such as the size, ownership etc. from the tape system and relied on the
use of Distributed computing environment (DCE) module of HPSS and implemented as a pftp connection
from the entire cluster. This approach created a load on DCE when lots of connections were initiated. Since
DCE is a core component critical to HPSS multiprocessing capabilities, the system would slow down overall
and eventually collapse due to a constant increase of DCE calls.

Hence, the new meta-data program was implemented bypassing DCE module and using direct HPSS API
calls. This program has been developed by the maintenance team of STAR’s HPSS setup.

Figure 3.10: Proportions of HPSS errors for 28th week, 2007

Figure 3.10 shows the proportion of errors after using the new meta-data program. Most of the errors
are dominated by the inability to satisfy request in pre-defined timeout. The purpose of the timeout is
explained in the next subsection.

3.6.1 Lifetime of a request

Even the frequency of HPSS collapses has been decreased, there is still small portion of them. Each of the
requests has a timeout (lifetime) to bring the file in a defined time range (e.g. 1 hour) within DC and also
Scalla system. When the collapse happens and as we noted above, there is an increase of requests slowing
down the system creating an accumulation of requests which cannot be treated by the system. The entire
queue of requests in HPSS is being shifted by a time offset. The batch system of HPSS will load the entire
queue of requests after the restart into memory. As the requests are recovered and requeued, the memory
consumption if the core HPSS grows and this also cause a slow down of the system. We have observed that
a recovery after a collapse is typically followed by more collapses due to a design problem with the queued
request system.

3.6. STABILITY AS ANOTHER DIMENSION OF THE EFFICIENCY 41

We could imagine introducing a lifetime of requests, eliminating some from the recovered queue, but in
reality there is no feasible way on how to cancel those requests in HPSS from the DC or Scalla/Xrootd. The
cascading effects do not stop at the HPSS level alone because previously expired requests (in the sense of
Xrootd and DC) are still being satisfied by the HPSS preventing HPSS resources from satisfying new incom-
ing requests. Those requests may themselves be satisfied beyond expiration time. It has been observed by
drawing plots seen on the figure 3.11 where the first collapse of HPSS occurred around 6 AM and making sig-
nificant number of failures (represented by the message The time to restore a file overlapped 3600s) till 9 PM.

Hence, a lifetime of the request within the batch system itself has been introduced. Moreover, the so-
lution needed to be more generic allowing to define whatever lifetime per each requests since the pre-staging
and staging requests need to be handled differently. Currently, the thresholds were set up as following:

� staging requests - 1 hour lifetime

� pre-staging requests - 2 hours lifetime

The purpose of this is that normal staging requests are processed within the job itself and therefore the
lifetime needs to be kept low as much as possible where pre-staging requests are independent on the job
processing and therefore could be longer. The whole idea relies on the fact that batch system purges the
expired requests after the restart of the queue and new incoming requests will be satisfied.

Figure 3.11: Cascading effects after the HPSS collapse

42

Chapter 4

Fair-share scheduling of tertiary
storage system

44 CHAPTER 4. FAIR-SHARE SCHEDULING OF TERTIARY STORAGE SYSTEM

4.1 Synopsis

In the previous chapter, we have presented the DataCarousel system that allows to retrieve files from the
tertiary storage system to any local disk system where data can be analyzed. Requests can be made by
many users and asking for several different datasets spread over many distinct tapes.

These requests are naturally dis-organized (ahead of the time) affecting an overall performance and a delay
of delivery in respect to the users. The ultimate goal of a system is to “organize” requests according to
several criteria and deliver a sustained data throughput along the maximal quality of service where all users
have ideally identical allocations of the provided service (i.e. fair-share for users). The criteria are for
example parameters influencing the performance in order to accomplish the sustained data throughput, but
also user’s dimension (e.g. priority) determining how the system’s allocation should be distributed among
users. Generally, such system has to present a strategy fulfilling many requirements. The strategy is more
familiarly known as the scheduling problem.

In this chapter, we will be studying a case of providing full fair-share scheduling algorithm that can
be further adopted into DataCarousel system. The faishare capability would give an ability to provide
reasonable response times of retrieving files from tertiary storage system in respect to the users. This means
that users asking for few files will not be indefinitely post-poned by users asking to restore entire data-set
resulting in many hours of running time.

4.2 A generalization of the problem

In this section, we will make a brief introduction into the scheduling theory in order to understand the
difficulty of scheduling. This summary will not be exhaustive but rather focus on a generalization of our
scheduling problem of tertiary storage system with respect to the known theory that was applied in other
scientific areas.

Scheduling in the computer science is a key concept in machine (e.g. computer) multitasking design. It
refers to the way how an amount of work is assigned to an one or multiple workers. An example is the
assignment of process/CPU scheduling where the work is represented by the process with a given job and
the worker CPU where the job can be executed and processed.

More generally, scheduling problems are being characterized by three sets:

� set η = {n1, n2, . . . nn} of n jobs

� set µ = {P1, P2, . . . Pm} of m machines (e.g. processors, devices)

� set κ = {R1, R2, . . . Rs} of additional resources

Scheduling goal is to assign processors from µ and resources from κ to jobs from η in order to complete
all jobs under the imposed constraints.

A schedule is such an assignment as a function of time. Each job is processed by at most one pro-
cessor at a time and each processor is capable of processing at most one job at a time.

A schedule algorithm is an effective and well described method with the goal of producing a good
schedule, but the definition of good will vary depending on the application. The application can for ex-
ample seek for minimizing total weighted completion time of n jobs where the problem is to sequence the set
of n jobs from τ on a machine m or multiple machines from µ. This often referred as the optimality criterion.

A scheduler is a piece of software which implements a particular scheduling algorithm and therefore
carries out in which order are jobs assigned to the machines.

The total completion time for set of s schedules σ = {s1, s2, . . . sn} and n jobs η = {n1, n2, . . . nn} can

4.2. A GENERALIZATION OF THE PROBLEM 45

be formalized as follows:

Cσ = Cσ(s1, s2, . . . sn)

Cσ =
∑
j∈η

wj c
σ
j (4.1)

where

wj is a weight of a job j
cj is a completion time of a job j under given set of schedules σ

The minimum total weighted completion time is then

min
i∈Sn

Cσ(si(1), . . . , si(n)) (4.2)

where

Sn is the set of all permutations of the set {1, . . . , n}

The completion time can be substituted by also other optimality criteria such as:

� Wait time fj (fj = cj − aj)

? aj is arrival time of a job

� Lateness lj (lj = cj − dj)

? dj is expiration time of a job j (a time when the job j should be completed)

� Tardiness tj (tj = max(cj − dj , 0))

In many multitasking systems the machine scheduling subsystem operates on three levels, differentiated by
the time scale at which they perform their operations. In this sense we differentiate among:

� Long term scheduling

? It determines which jobs are admitted to the system for execution and when, and which ones
should be postponed.

� Medium term scheduling

? It determines when jobs are to be suspended and resumed.

� Short term scheduling (or dispatching)

? It determines which of the ready jobs can have computation machine, and for how long.

Taking into account the states of a jobs, and the time scale at which state transition occur, we can imme-
diately recognise that dispatching affects running, ready, blocked jobs while the medium term scheduling
affects ready-suspended or ready-blocked jobs. The long term scheduling affects new and exited jobs. Long
term scheduling obviously controls the degree of programming in multitasking systems, following certain
policies to decide whether the system can honour a new job submission or, if more than one job is submit-
ted, which of them should be selected.

Along the line of possibility to suspend jobs, we divide scheduling algorithms into two categories with
respect to how they deal with possible interrupts:

� Preemptive scheduling

� Non-preemptive scheduling

A scheduling is non-preemptive if, once a job has been given to the machine, the job cannot be taken away
from that machine before it finishes its work. Opposite to this, a scheduling is preemptive if the job can be
suspended/interrupted during its progress.

Apart from the optimality criteria mentioned previously, the scheduler should consider many other ob-
jectives during its design. In particular, a scheduler should consider fairness, efficiency, response time,
policy enforcement, throughput.

46 CHAPTER 4. FAIR-SHARE SCHEDULING OF TERTIARY STORAGE SYSTEM

Fairness is important under all circumstances. A scheduler makes sure that each job gets its fair share of the
machine and no job can suffer indefinite postponement. The fairness always coheres with well known term of
”resource starvation” where a job is perpetually denied necessary resources. Without those resources, the job
can never finish its task. To conclude, if the scheduler is fair enough, the resource starvation should not occur.

The policy driven scheduler has to make sure that system’s policy is enforced at any point of time.
An example of the policy can be shortest job first, round robin etc. A scheduler is efficient when it keeps
the system busy hundred percent of the time when possible. If the system can be kept running all the time,
more work gets done per second than if some components are idle and think what to do or wait for certain
excessive time-consuming operations extending the completion time. If the system is enough efficient, it
also minimizes the response time for interactive user. The highest throughput maximizes the number
of jobs processed per unit time.

A little thought will show that some of these goals are contradictory and mutually interconnected. It
can be shown that any scheduling algorithm that favors some class of jobs hurts another class of jobs. This
is what makes any scheduling problem very hard as it is.

4.3 Tertiary storage system scheduling specification

When skimming the problem of scheduling for tertiary storage system one can distinguish that this is long-
term and non-preemptive scheduling. The major concern of tertiary storage performance is the high latency
and therefore our main focus is in reducing the amount of time that a given request has to wait before it is
serviced (i.e. minimizing the total waiting time).

The fairness objectives defines quality of service where all users have almost identical delay in request
satisfaction. The highest throughput is the case of maximal data streaming flow per tape drive where the
efficiency has a dimension of optimal tape switches since the switch operation defines the highest delay. The
non-preemptive nature comes from the fact that unmount, mount, seek of a tape takes excessive amount of
completion time when considering a suspend of a job in order to make any optimization improvement.

In the chapter 3, we have explained that performance has two factors that come into play: size of re-
quested files and number of files per tape mount. The size of the requested files relates to the fact that a
tape drive has to perform many seeks when considering small files and the length of uninterrupted stream-
ing is therefore very short. Along the line of seeking through the tape, one can also raise an opinion that
servicing a bundle of requests asking for fewer seeks (i.e. bigger files) on NOT currently mounted tape
before requests with many seeks (i.e. small files) on the currently mounted tape can be more beneficial. The
importance of this consideration is determined by the relative values of the switch time and seek time.

If the switch time is large compared to the expected or average seek time, then it is unlikely that switching
to a new tape before servicing all requests on the currently loaded tape will be beneficial. On the other
hand, if the switch time is small to expected or average seek time then the immediate switching tape without
servicing all requests and then later returning to service the remaining requests may result in lower waiting
times and much higher data throughput. We expect that eliminating switches is more important due to
the large magnitude of switching cost (robot arms, tape rewound etc.). Therefore, we strongly believe that
scheduling for the tertiary storage system should be aimed to minimize the number of tape switches (i.e.
maximum number of files per tape mount) rather than scheduling fewer seeks (i.e. large files). We refer to
maximum number of files per tape mount as process when all requests from the loaded tape are serviced
before it is unloaded.

The seeking attribute also has an other dimension, the order in which to service the requests for a loaded
tape. The order of servicing requests on the tape is mainly based on the location of files on the tape. Obvi-
ously, the simplest solution is to service them in the order of location on the tape and therefore reduce the
amount of seeking area. However, we don’t consider finding efficient schedules for a loaded tape, instead we
commit this problem to an existing technique researched and implemented by the tertiary’s storage system
implementation (e.g. HPSS).

We have stated that the performance should not harm the quality of service (QoS) and there should be
a trade-off to some extend between them. We define the quality of service as the percentage of successful
requests satisfied in pre-defined timeout (e.g. 1 hours). This means that the user should not be indefinitely

4.4. FAIR-SHARE SCHEDULING ALGORITHMS 47

postponed in order to ensure the highest throughput per tape drive, but rather to create a balance between
both.

In conclusion, an optimal scheduler should be based on minimum switching model, expresses switches having
largest files among other switch bundles and gives a priority to the switches having assigned the highest
user’s importance.

4.4 Fair-share scheduling algorithms

In this section, we define several algorithms that will be used to evaluate our findings and needs. The
authors of [49] have showed that scheduling problem for multiple drives is NP-Complete. They reduced the
scheduling problem to known NP-Complete problem of Scheduling to Minimize Weighted Completion Time.

Therefore, we will present 3 different heuristics based on our performance study and also certain level
of quality of service:

• The First Come First Serve (FCFS) algorithm

• The Weighted Fair Queuing (WFQ) algorithm

• The Weighted Fair-share Grouping (WFSG) algorithm

The algorithms are explained in the order of their complexity, FCFS is the simplest algorithm while WFSG
is high-level scheduling algorithm incorporating many parameters. All algorithms assume that each request
has at least the following fields: the id of the desired tape, data size to be requested and also a user which
submitted the request. Requests are coming with a mean arrival rate, following a particular distribution and
are placed into the queue of waiting requests. An algorithm has to scan the queue of requests and extract
requests or batch of requests that will be submitted to the tape system.

4.4.1 The First Come First Serve (FCFS) algorithm

The simplest scheduling scheme is The First Come First Serve, sometimes also known as FIFO (First
In First Out). The requests are executed in the order they arrive to the tape system. This algorithm is
expected to have poor performance and QoS for heavy workloads. It will lead to large number of costly tape
switches. Furthermore, the tape drive will remain idle for large periods of time, waiting for tape switches
resulting in mounting/unmounting/rewinding tapes. The QoS of this algorithm is limited by the fact that
users are served in the order which arrived to the tape system. This provides a first and simplest level of
fairness (service in the order of arrival).
Essentially, FCFS is not an high-level scheduling algorithm and it is mainly used for comparison purposes.

4.4.2 The Weighted Fair Queuing (WFQ) algorithm

The idea of Weighted Fair Queuing algorithm [50] comes from packet-switched computer networks (routers,
switches) where this scheduling technique allows different data streams represented by packets to fairly split
the available communication channel. WFQ is a generalization of Fair Queuing (FQ).

FQ allows to fairly share the link capacity by incorporating a model of the conventional First In First
Out (FIFO) queuing. The model is designed in such a way that an ill-behaved flow (having unfairly many
or large data packets) punishes itself and not other flows. This achieved by dividing many packets into sep-
arate FIFO queues. Each of the FIFOs holds the packets of one flow. Those flows are defined for instance
by source or destination IP addresses. FQ computes an finishing time of each packet based for instance on
the arrival time of the packet, the packet size or the number of queues. This virtual time is later used to
select ceratin number of packets with minimal finishing time. FQ is analogous to round-robin scheduling,
but not entirely since the maximum data rate per a flow is weighted by the packet size. In other words, it
is not a random pick from FIFOs (or Round Robin picking), but it is rather weighted by the size of the packet.

In WFQ, a bandwidth R is divided in N FIFOs and each gets a weight of Wi (i = 1 .. N). It is im-
portant to realize that contrary to FQ, WFQ is NOT telling what the Wi should be but only that for
element i, the share is:

Si = R×
Wi

N∑
k=1

Wk

(4.3)

48 CHAPTER 4. FAIR-SHARE SCHEDULING OF TERTIARY STORAGE SYSTEM

Regular FQ is a special case of WFQ for equal weights of the queues.

The WFQ algorithm can be easily adopted to our studied problem. The bandwidth R is considered as
N requests which has to be submitted in periodic times to the tape system. The queues are defined as dis-
tinct users asking for different files and creating each separated FIFOs. The weights for queues are assigned
according to their pre-defined priorities of users. The FIFO for our case is not strict FIFO but weighted by
the location on tapes (an attempt to reduce the number of switches).
At the beginning, we look at the assigned priorities of users and calculate number of slots from N a group
may allocated. Then we choose a portion of N from each FIFO giving an advantage to requests from the
same tape (first key parameter of performance).

This approach still fulfills the consideration that users with many requests punish only themselves and
also that the resource starvation is avoided. On the other hand, the algorithm doesn’t de-favor small and
big files (second key parameter of performance), so the share is the same. Next issue is that the parameter
of number of files per tape is not favored enough, since it is applied in each separated FIFO (it should be
take into account from the view of entire queue).
The last and most important finding is that a user with too high priority can still create a resource starvation
and requests from other users will not be scheduled for long time. This can be achieved by considering a
usage history which will then provide full fair-share.

We have taken the approach of usage history in the next algorithm, considering also other mentioned
issues (such as file size or number of files per tape on entire queue).

4.4.3 The Weighted Fair-share Grouping (WFSG) algorithm

On many systems, mentioned problem in WFQ is partially addressed by a charging mechanism [51]. Typi-
cally, charging mechanism involves allocation of a certain budget to each user and as users consume resources,
they are charged for them. It is often called as the fixed-budget model, in that each user has a fixed size
budget allotted to him. As the user use resource, the budget is reduced and when it is empty, he cannot use
the resources at all (assuming that others users have their requests in the queue).
Our approach is to regard each user as having an entitlement to fair share of the system, relative to other
users. Then the task of an accounting system (being part of the scheduler) is to ensure that user’s entitle-
ment is decreased as the user satisfies his requests. The figure 4.1 shows two factors that will be incorporated

shares Usage

User’s tape system

share entitlement

User’s actual tape

system share

adjustTake into account

define define

has has

Each user

Fair-share

scheduler

Figure 4.1: Overview of fair-share

in our fair-share scheduler: user’s shares and user’s usage.

A user’s shares indicate his entitlement to retrieve files from the tape system. The more shares a user
have, the greater his entitlement. If a user A has twice as many shares as user B, then in long term, user A

4.4. FAIR-SHARE SCHEDULING ALGORITHMS 49

will be able to do twice as much work as user B.

On the other hand, each user has a usage, which reflects how much work the user has done over period
of the time. The usage history is decayed [52] in order to incorporate most recent fair-share data to con-
tribute more than older data. In order to have the decaying process flexible enough, we define 3 parameters:
TIME WINDOW, N WINDOWS and DECAY. The time is broken into a number of distinct fair-share win-
dows, where the TIME WINDOW specifies the duration of each window while the N WINDOWS parameter
indicates the number of windows to consider. The DECAY parameter limits the impact of fair-share data
according to its age.

Decay parameter is specified as a value between 1 and 0 where a value of 1 (the default) indicates no
decay should be specified. The smaller the number, the more rapid the decay is, we use the following for-
mula:

DecayedUsage = Usagei ·DECAY i (i = window number) (4.4)

Following table 4.1 shows the impact of decay parameter on the percentage contribution of each fair-share
window. It is important to note that more windows will cause the decay parameter to degrade the contri-
bution of aged data more quickly. The reason for this is the behaviour of ax function used in the formula
4.4. The number of delivered mega-bytes to a user is used as the usage metric in our scheduler. Using this

Table 4.1: Decay parameters snapshot
Decay Window 0 Window 1 Window 2 Window 3 Window 4 Window 5
1.00 100 100% 100 % 100% 100% 100%
0.8 100% 80% 64% 51% 41% 33%
0.75 100% 75% 56% 42% 31% 23%
0.5 100% 50% 25% 13% 6% 3%

usage metric, the accounting module keeps to update each fair-share window until it reach its boundary,
at which point it rolls the fair-share window and begins updating the new window. The module also keeps
track of utilization information for each user as well as for the total usage of the system.

The usage of the user is then computed according to the following formula:

Usage history User =

(
N∑
i=0

usageUseri ·DECAY i
)

(
N∑
i=0

usage totali ·DECAY i
) (4.5)

where

UsageUseri = is usage consumption of user in window number i

UsageTotali = is usage consumption of all user in window number i

N = number of windows specified by N WINDOWS parameter

DECAY i = DECAY parameter exponentiated to window number i

Let us consider following example of User A and User B using parameters N WINDOWS = 3 and DECAY
= 0.5. Table 4.2 summarizes individual usages of our example in the system according to distinct windows.
The usage history is then equal assigning values into formula 4.5:

Table 4.2: Example of User A, B and total usage in the system
Window 0 Window 1 Window 2

User A 500 MB 0 MB 10MB
User B 500 MB 200 MB 290MB
Total 1000 MB 200 MB 300MB

50 CHAPTER 4. FAIR-SHARE SCHEDULING OF TERTIARY STORAGE SYSTEM

Usage history User A =
500 + 0 · 0.51 + 10 · 0.52

1000 + 200 · 0.51 + 300 · 0.52
=

502.5
1175

= 0.4277

Usage history user B =
500 + 200 · 0.51 + 290 · 0.52

1000 + 200 · 0.51 + 300 · 0.52
=

672.5
1175

= 0.5723

It can be distinguish from the following example that the usage history per user is normalised in respect to
other users.

Having defined usage history, we need to incorporate it with the key performance parameters that influences
the data throughput. At the beginning of the chapter, we have explained that the key relies in the minimum
switching model, i.e. restrict tapes as much as we can, followed by the next important consideration that
needs to be integrated, the size of requested files. However, the algorithm always needs to express minimum
switches over any other considerations.

To overcome this, we inspired ourselves in the cost model. Each request Ri has an assigned cost Ci that
takes to restore it from the tape system. For each request we then define a weight that is used to pick the
best schedules. The weight is simple defined as inverse value of the cost, taking into account number of
shares that are allotted to the particular user.

Wi = sharesuser ·
1
Ci

(4.6)

The definition of the overall cost for our case is composed of 3 fractional costs being based by already
mentioned parameters:

� C tape
i - number of files from the same tape

� C size
i - the size of requested file

� C usage
i - usage history of the user submitted the request

The composition of the overall cost is defined as a flexible combination of those fractional costs :

Ci = switch factor · C switch
i + file size factor · C size

i + usage factor · C usage
i (4.7)

where

tape factor + file size factor + usage factor = 1 (4.8)

and

tape factor = constant factor that characterizes an importance of tape switches
file size factor = constant factor that characterizes an importance of file size

usage factor = constant factor that characterizes an importance of usage history

The reason for the equation Eq. 4.8 equal to 1 is that all fractional costs are ranging values from 0 to 100.
This gives posibility to weight costs according to their importance in the overall cost. Each fractional cost
has assigned computing function. Each of the functions follows the notion of the cost, i.e. the less number
of file from the same tape, the higher the cost, smaller size higher the cost etc.

4.4. FAIR-SHARE SCHEDULING ALGORITHMS 51

Let’s consider N requests R = (r1 . . . rN):

C tape
i =

file per tape max

| ∀j ∈ N̂ : rtape idi = rtape idj |︸ ︷︷ ︸
fileswith tape id

×

(
100
| R |

)
︸ ︷︷ ︸

normalisation element

(4.9)

C size
i =

file size max

r file sizei |︸ ︷︷ ︸
file size of request i

×

100

N∑
j=1

C size
j

︸ ︷︷ ︸

normalisation element

(4.10)

The C usage
i is equal to already mentioned usage history 4.5.

One can observe that the cost formula has been designed to be fully configurable, allowing to give a pos-
sibility to force user’s dimension among the performance or vice-versa. If an administrator adjusts the
tape factor equal to 1 and others equal to 0, the algorithm would convert to the shape of WFQ where each
queue is represented by files from the same tape. This approach will certainly achieve the best performance
but suffers from any kind of fairness.

We propose following configuration that follows our findings and understandings:

� tape factor = 0.6

� file size factor = 0.1

� usage factor = 0.3

A justification of this configuration is given in chapter 5.

52

Chapter 5

An evaluation of scheduling
algorithms

54 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

5.1 Synopsis

In previous chapter, we have presented a description of 3 different algorithms that can be used to somehow
achieve the fair-share scheduling of requests. The word ”somehow” means that each of the algorithm has
its own interpretation of the solution. All construed algorithms are heuristics that have been built from our
observations and studies presented in previous chapters. A thoughtful and expected process is to evaluate
those algorithms in the real environment and therefore present a proof of described and proposed solutions.

An important and desired proof is to see how the algorithms behave under particular varying request
rate where the behaviour can be defined in many ways spanning tremendous number of parameters. One
can easily imagine that an exclaiming parameter can be performance (MB/s) or a delay of each request as
well as the number of successful delivers of requests and many others. This of course bears a big puzzle in
the evaluation process since it results in many hours, days and weeks of running time on the real system
such as HPSS, not even speaking about the difficulty of measurements. In order to overcome this fact, we
built a ”simulator” of the tape system that is able to emulate the basic characteristics of the tape system.
Hence, our evaluation of the algorithms is performed on this simulator.

Before constructing the simulation, it is first necessary to abstract from the real system components and
their interactions that are considered important to a model which should be at the end simpler and/or easier
to study. Building a simulation system model involves making certain simplifying assumptions to aid in
the actual implementation and study of the simulation (without such simplifications the model would be as
complex as the system it is meant to be simulating).

The outline is following, we firstly describe all necessary components that are required to build a sim-
ple tape system, next we give an overview on how to generate requests and also how this generation can
be mapped to the workload seen in STAR environemnt. Furthermore, we describe the design of our simu-
lator from the software architecture perspective and finally present results of our evaluation including the
description of parameter monitoring space.

5.2 Tape system hardware

In order to simulate a tape system [15], [53], we need to firstly define components that characterize a tape
system and then predict how long the operations with these components take. We predict these times by
defining a tape system hardware model where the final simulator takes them into account.

Basically, the simulator needs to know the time required to load a tape in a drive, read a data from this tape
and also the time it takes to unload the tape from the drive. Many other factors are also important such
as a size of the library (in terms of the tape quantity), robot arm movements etc. In following subsections
we define model that will be used to simulate behaviour of a tape system. The model will be used by the
simulator where the attributes describing the model will be substituted by the values of real devices. The
model contains 2 main components that describe behaviour and basic operations of a tape system:

� tape drive

� tape library and robot arm

While the purpose of each of this part has been carefully explained in chapter 2.4, we concentrate on
attributes characterizing the operations of each of the components.

5.2.1 Tape drive model

The tape drive model is defined by following attributes which form the behaviour of any available tape drive
devices:

� Load time

? This is the time to load a tape into a tape drive.

? This includes time to wrap a tape around tape reels in the drive and read servo bands and
initialization information.

� Seek time to first file

? This attribute defines average time that takes to seek to a first file on a tape that is not currently
mounted.

5.2. TAPE SYSTEM HARDWARE 55

? It is an average time spent to position the tape to a first read file.

? Some of the models such as [54] incorporate also the additional attribute a settling time after a
seek. This time is spent for precise positioning and opening communication channels for a transfer
after a fast seek. We consider this time as part of a seek time and not a separated attribute.

� Seek time to next file

? This attribute defines time that takes to seek to a next file that occurs after a reading of first file.

? The time to seek to additional file is considerably shorter than the seek to a first file.

? It is defined as an overhead time per file on a tape that comes from multiple tapemarks between
files. This attribute is not shipped in manufacturer’s device description since it is related to size
of written files (small files ⇒ many tapemarks).

? With regard to [47] we define this as a one tenth of seek time to first file attribute.

� Transfer rate

? The transfer rate is the sustained rate at which a drive can transfer data.

? This attribute is used to compute a time which is spent to transfer a file from a tape into a cache
by a given size of the file.

� Rewind time

? Most of the tapes have to be rewound before they can be unloaded from the drive. The purpose
of this fact is that the drive has to recognize position on the tape. The drive has no possibility
to find the position of the tape if the tape was ejected without the rewinding.

? All tape drives include a rewind operation that is considerably faster than its normal data transfer
rate, therefore we define it as next separated attribute.

� Unload time

? This is the time to eject a tape from a tape drive.

? Such operation includes unwrap a tape from the reels and push it out the door of the tape
mechanism.

The seek times and rewind time heavily depend on the actual position of the tape (current position on the
tape, size of files for the case of seek to next file). In other words, the time to seek to a file located on the first
position of the tape would be faster then to seek to a file located on the last position of the tape as well as
seeking to the next file on larger files would be faster than on smaller files (the case of the tapemark overhead).

The same logic applies for the rewind time. The times that are defined as attributes above are average
values offered from device’s manufacturer. In order to simulate this fact, we use the Normal distribution
5.2.1 that includes the average value as the mean parameter. For the case of variance parameter, we use
realistic numbers seen in table 5.1 in respect to the measurements gathered in [15], [55].

f(t) =
1

σ
√

2π
· exp

(
−

(t− µ)2

2σ2

)
−∞ < t < +∞ (5.1)

E(T) = µ

V ar(T) = σ2

Mapping of tape drive to STAR environment

In chapter 3, we have referred that tapes used in STAR are 9940b from 98% and LTO-3 from 2%. This was
indeed an accurate information for the time when the performance study has been guided. In the meantime
of the simulation and performance study, STAR has transferred almost all files to LTO-3 tapes. Hence, the
LTO-3 drive has been used as the tape drive for the simulation. The values for particular operations are
displayed in table 5.1.

56 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

Table 5.1: StorageTek LTO-3 tape drive
Operation Device value Variance
Load time 19 sec -
Seek to first file 72 sec 25 sec
Seek to next file 8 sec 2 sec
Transfer rate 80 MB/s -
Rewind time 49 sec 20 sec
Unload time 19 sec -

5.2.2 Tape library system and robot arm model

We explained in the section 2.4.2, that any tape library includes a robot arm which moves a tape from the
collection of tapes into a drive. This is referred as a switch operation that includes atomic operations such
as grab of a tape from library, movement of a tape from library/drive to a drive/library (2 movements are re-
quired per one tape switch) and also remove of a unloaded tape from a drive and its placement into the library.

The tape library can contain hundreds of tapes where the overall storage size of the entire tertiary storage
system relies on the number of available tapes in the library. Common sense heads to the theory that the
robot arm movement depends on the size of the tertiary storage system, more precisely on the number of
tapes. This is indeed a faithful statement, but the design of the library is usually in the shape that the
operation to move a tape from one end of the library to the other is proportional to the size of the library
(e.g. silo with two arms robot in 180-degree direction to support faster movement across the entire silo).
However, manufacturers of tape libraries are very vague about the switch times of their products (usually
values are in the form less than something). Once again, we represent the switch operation using the Normal
distribution where the parameters can be seen in table 5.2. The variance parameter has been chosen with
respect to measurements gathered in [15].

Other perspective which needs to be consider in relation to the robot arm is the number of available tape
drives which can stream data from tapes to a cache. Obviously, tape library system that contains 1 drive
will have different performance than library containing 10 drives. Alternative dimension relevant to number
of tape drives is a congestion of tape switches that can accumulate when many tape drives request a tape
switch at the same time. As a conclusion, a simulator should keep track of the tape drive switches and delay
some of the drives if the robot arm is busy.

Next finding relates to the number of tapes and tape drives in the simulation of a workload. Obviously, the
performance of the system which will contains one tape drive and one tape would be much higher than of
system which contains one tape drive and outrageous number of tapes. At the end, the performance would
be degraded by the overloaded tape drive constantly switching tapes to satisfy all requests. The simulation
of a workload is detailed in section 5.4.

Tape library in STAR

STAR is using SL8500 Modular Library System [56]. The number of LTO-3 drives that are available to
STAR is displayed in table 5.2.

Table 5.2: STAR’s library system
Attribute Mean value Variance
Robot arm switch time < 11 seconds 1 second
Number of LTO-3 drives 7 drives -

5.3 Access time of request processing

From the basic perspective, 3 use cases has been analyzed that can occur during the processing of a request
on the tape drive. This section illustrates formulas that are being used to compute a access time of the
particular request.

The first use case is related to the situation when the tape drive has no tape currently loaded, i.e. empty

5.4. REQUEST GENERATION 57

drive:

Access time empty drive =

no need for removal and second movement︷ ︸︸ ︷
robot arm switch time

2
+ load time +

+ seek first file time +
file size

transfer rate︸ ︷︷ ︸
transfer time

(5.2)

The second use case is related to the situation when the tape drive has loaded tape but the request is located
on different tape, i.e. switch of tape:

Access time switch = rewind time + unload time + robot arm switch time +

+ load time + seek first file time +
file size

transfer rate
(5.3)

The last case is related to the situation when the tape drive has loaded tape where the request is located
on this tape, i.e. seek to next file

Access time seek = seek next file time +
file size

transfer rate
(5.4)

All defined use cases are incorporated in our simulator where the details of implementation is given in the
section 5.5.

5.4 Request generation

The chapter 4 of scheduling algorithms counts with several attributes that each request has to carry on. In
real environments, each request is represented by a file name and a user which has submitted the request.
One of the assignments of the tape system is to keep track of meta-data information (size of the file, location
of file on the tape, permission etc.) per file (being linked via the unique file name) in separated meta-data
database. Indeed, the approach of an attempt to simulate this functionality would be exaggerated and
useless requirement.

Much more simpler solution for the simulation is to randomly (with pre-defined pattern) generate requests
that will contain all necessary attributes:

� User that has submitted the request

� ID of a tape where the request is located

� File size of the request

The meaning randomly generate requests indeed needs to follow the particular patterns. One of these pat-
terns is for example the arrival of the request that occurs during the simulation time. We have taken an
approach studied in telephone traffic theory [57] where the arrivals of phone calls are represented with the
stochastic Poisson process.

The Poisson process has 2 fundamental and sufficient properties that are:

� Number representation which means that number of requests within a time interval of fixed length is
Poisson distributed

P{X = x} =
λx

x!
· e−λ x = 0, 1, 2 . . .

E(X) = λ

V ar(X) = λ

58 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

� Interval representation which means that the time distance between consecutive request arrivals is
exponentially distributed

f(t) = λ · e−λ t t ≥ 0; λ > 0

F (t) = 1− e−λ t t ≥ 0; λ > 0

E(X) = λ−1

V ar(X) = λ−2

When the requests have defined arrivals, the next goal is to generate users according to a pattern that has a
randomness. We have taken the simplest approach which comprehends 2 users defined in the system where
Bernoulli distribution distinguishes arrivals of requests from one of the defined users. The generation of
tape id and size of the request is explained in the next section.

5.4.1 Mapping STAR data-set

Previous section describes how to generate an arrival of request as well as its classification to a particular
user. Next ultimate goal is to assign location of the request to a specific tape and also number of bytes that
request is asking for. As one can think of, the generation of these two attributes needs to again follow a
pattern that has a notion of randomness. This pattern is in reality related to a certain data-set containing
many physical files which a user (or multiple users) is asking for.

Our evaluation has the purpose of finding an efficient fair-share scheduling algorithm that can be used
to schedule request containing STAR data-sets. To this aim, we try to map a real STAR data-set to our
problem. For the data-set, it has been chosen pp 200 GeV Year 6 data-set that has the abbreviation P06ie
(data-set produced using P06ie version of STAR offline software library). In the chapter 3, it has been
explained that files that are being used for the analysis are MuDst, therefore our mapping contains MuDst
files from P06ie data-set.

File Size (MB)
20 40 60 80 100 120 140 160

O
cc

ur
en

ce

0

200

400

600

800

1000

1200

1400

1600

1800

STAR’s P06ie MuDST file size distribution

Figure 5.1: Distribution of P06ie MuDst file size

The figure 5.1 shows the probability density function of file size distribution in P06ie data-set where the
size of each bin is exactly equal to 1 MB. The basic goal is to incorporate this distribution into the simulator
which would be able to sample random values that follows the notion of this distribution. One approach
that can be taken is to fit a one of familiar distributions and therefore obtain parameters of this distribution
that can be further used to generate sample values.

5.4. REQUEST GENERATION 59

File size (MB)
20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

STAR’s P06ie MuDST file size cumulative distribution

Figure 5.2: Cumulative distribution of P06ie file sizes

Any fit of known distributions would be inaccurate when observing the character of the function. There-
fore, we selected the Inverse transform method [58] of sampling from the cumulative distribution function
to achieve better precision of data-set file size sampling. This method comes from the definition of the cu-
mulative distribution function (CDF). The CDF of random variable X is defined in terms of the probability
density function p as follows (random variable X takes on values between a and b):

F(x) =
∫ b

a

p(t) dt

The CDF function always has the range between 0 and 1. The inverse method resides in the ability to
generate random (or pseudo-random) number in the interval of [0,1] which can be further used and inversely
transformed to a variable x that has the CDF function value equal to this random number. The sample is
than equal to variable x. The figure 5.2 shows the cumulative distribution of P06ie file sizes. Each entry
contains a pair of variable and CDF function variable that has been included into our simulator.

Tape ID
0 100 200 300 400 500 600 700 800

O
cc

ur
en

ce
 (

fi

le
s

pe
r

ta
pe

 I
D

)

0

200

400

600

800

1000

STAR’s P06ie tape id probability distribution

Figure 5.3: Distribution of P06ie MuDst tape ids

Figure 5.3 shows the distribution of P06ie tape ids. In the reality, the tape ids of a data-set do not
have the range from 0 to 900 but rather fluctuate and reach values that are considerably distinct from each
other. To overcome this fact, the range has been normalized to the interval (0, 900) since the important
and essential information that has been intended to demonstrate is the number of files per tape.

60 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

Tape ID
0 100 200 300 400 500 600 700 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

STAR’s P06ie tape id cumulative distribution

Figure 5.4: Cumulative distribution of P06ie tape ids

The figure 5.4 shows the cumulative distribution function of the P06ie tape ids. It can be seen that the
function is almost linear and therefore the usage of the inverse method would be exaggerated requirement.
Instead, the application of simple Uniform distribution is a sufficient instrument.

5.5. SOFTWARE DESIGN OF THE SIMULATOR 61

5.5 Software design of the simulator

First step towards building a simulator of the tape system (or any other system) is to determine exactly what
are the important features which are to be measured, and what are the characteristics of the system that
have an affect on them. All of this has been covered in previous sections. This section illustrates the software
design constructed for the creation of tape system simulator. The design firstly describes segments that can
be considered as the core of the simulation and then it explain how this core fits into our simulation problem.

In most simulation packages [59], the components that are corner-stones of the simulator are called en-
tities. Each entity in the simulation can have associated zero or more attributes that describe the state of
the entity and which may vary during the simulation process. The interaction of entities and the changes
they cause in the system state are termed events.

There are 3 main categories how the state of components can change in respect to a function of time:

� Continuous time

? The state varies continuously with the time where the system is usually described by sets of
differential equations.

� Discrete time

? The system is considered only at selected moments in time (observation points) that are typically
evenly spaced.

� Continuous time-discrete event

? The observation period is a continuous and real interval where the operation path is completely
determined by the sequence of event times where those events make discrete changes of states of
individual components at those times.

Our simulator of the tape system is Monte Carlo continuous time - discrete event based simulator
that uses Monte Carlo method to randomize operation time of components or to generate requests arrivals
that occurs at discrete points of the simulation time. It is written in the Java programming language and
uses 2 additional java libraries: log4j [60] widely used for the message control in java programs and chart
drawing library called jfreechart [61].

5.5.1 Events and scheduler of events

Each event holds a certain operation that should be performed on a specific component at an exact point
of the simulation time and therefore changes the state of the component. The event mostly schedules other
event (or itself in respect to the future) during the operation period that is a result of the event execution.
In order to control the order of events processing, we introduce central component of our simulator called
Scheduler.

The scheduler allows the creation of events and controls their interaction according to a set of rules. These
rules are being defined by the order of events, i.e. scheduling an event after other event or vice-versa. The
scheduler also keeps track of current simulation time by setting an internal clock where the simulation step
is represented by a movement to the next event that holds a un/equal simulation time.

From mentioned above, the scheduler needs to contain a reference to a component, an event that holds
a work for the component and also a certain point of simulation time when the event should be executed.
The scheduler holds a sequence of objects called schedules that owns a triplet of 3 mentioned objects:
component, event and simulation time. The scheduler is then responsible for managing those schedules: e.g.
insert of new schedule, an execution of the schedule from the head of sequence etc.
The figure 5.5 shows the schematic picture of described scheduler, elements that form it and their interac-

tions.

5.5.2 Events of the tape system

The table 5.3 demonstrates how the event model fits into the simulation of the tape system. Each row of
the table contains distinct event which has the particular functionality. Each event has a target which in
this case is either the tape drive or the robot arm (there are also other target further in the explanation).
The description of the event explains the purpose of the event as well as the description of the operation for
which the event was created.

62 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

Simulation

scheduler

Schedule_5Schedule_2Schedule_4Schedule_1

Sequence of schedules

Simulation

clock

Active schedule

Next schedule

Set active schedule

Active component

adjust

Active

event

Time

Work time

Worker

Work

Used to move in

 simulation time

Figure 5.5: The overview of the simulation scheduler

The targets are components where their attributes have been explained in section 5.2.

Table 5.3: Events of tape system’s components
Name of the event Description of event Target of event

ProcessRequestEvent
It represents 3 use cases define in section 5.3.
According to the state of target component
schedules particular events.

Tape drive

LoadTapeEvent
The event that represents the load operation
of the tape drive. It sets the new tape id to
the target component.

Tape drive

UnloadTapeEvent
It represents the unload operation of the tape
drive where the current tape is set to be empty
on target component.

Tape drive

TransferDataEvent
The event that counts how long it takes to
transfer the request on the target component. Tape drive

SwitchTapeEvent

This event represents the switch operation of
the robot arm. The robot arm keeps track
of components that have requested the switch
operation according to a time and thus han-
dles the congestion of switch operations.

Robot arm

SeekFirstFileEvent
The event that represent the seek operation
on the tape that was newly loaded. Tape drive

SeekNextFileEvent
The event that represents the seek operation
on the tape where at least one seek was per-
formed before.

Tape drive

RewindTapeEvent
It represents the rewind operation of the tape
drive on currently loaded tape. Tape drive

5.5.3 Work-flow of the tape system simulator

The above explanation is missing the description of the simulation work-flow. One of the open question can
for example be: ”Where and how scheduling algorithms fits into the simulation ?” or ”How the concurrency
of multiple tape drives is being handled ?”.

To answer the first question, the figure 5.6 has been drawn. We followed exactly the same environment
as can be seen in STAR. Requests are coming from users where in this case are represented by the Request
generator. They are being queued and scheduled by the component called ”DataCarousel” where in this
case is interpreted by the Scheduler. The scheduler is the location where all algorithms determined for the

5.6. RESULTS OF THE EVALUATION 63

evaluation fits to. They are responsible for submitting a selection of requests in consecutive time periods
to the tape system (more precisely to the tape system queue). Each tape drive then obtains a request for
processing by calling certain method on the tape system queue.

From the previous, there is an evident answer for the second question. The concurrency is simply be-

Request_1

Request_2

Request_3

Request_4

Request_5

 .

 .

 .

Request_N

Scheduler
Request

Generator

Request

TapeID

User

File size

Poisson distributed

number of requests with

exponential distribution

in time

Schedule requests

each 3 mins 50 requests

Submit generated

requests

Request_100

Request_110

Request_120

Request_123

Request_120

 .

 .

 .

Request_N

Tape system Pool of

drives

getNextFile

getNextFile

LTO3

LTO3

LTO3

LTO3

LTO3

Figure 5.6: The overview of the simulation work-flow

ing handled by multiple events executed on the different instances of the tape drive (the execution time of
2 events can be identical without any difficulty since the simulation scheduler has the ability to move at the
same simulation time if needed).
Table 5.4 shows additional events that are being used to realize described work-flow.

Table 5.4: Additional events for the work-flow
Name of the event Description of event Target of event

NextRequestEvent

The event that represents the case where the
tape drive has finished the transfer and is ask-
ing the tape system queue for the next request
to process.

Tape drive

SubmissionWindow-
Event

The event that is executed in consecutive time
periods in order to submit a bunch of requests
to the tape system queue. It is executed on
the scheduler component of the simulator.

Scheduler

RequestsArrivalEvent

It represents the arrival of requests. The re-
quests are inserted into scheduler queue and
the next appearance of the event is distinguish
by a certain MC sample.

Request generator

AccountingWindow-
RotationEvent

This event represents rotation of fair-share
windows described in the subsection 4.4.3. Ac-
counting module decays most recent usage
data and discards the ancient data if number
of windows exceeds.

Accounting
module

The Accounting module component is used to register successful or submitted requests and thus
compute evaluation parameters. It also has the other dimension for the case of WFSG algorithm described
on the page 48 where the accounting module has the role to keep track of users and thus compute usage
history for each of the users.

5.6 Results of the evaluation

At the beginning of this chapter, it has been stated that the evaluation can span tremendous number of
parameters presenting the behaviour of each algorithm. Our evaluation is based on 3 following parameters
that can give a comparison of proposed algorithms. These evaluation parameters are defined as follows:

� Performance

? It is measured in MB/s that the tape system can achieve using the certain algorithm. It can give
an imagination how much data can be transferred for some period of time.

64 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

� Delay of request

? It is measured in seconds defining the average time of delay per request in the system. Some of
the algorithms can have high delay in order to achieve better performance. The purpose of this
parameter is to outline responsiveness of the system using a particular algorithm.

� QoS (Quality of Service)

? The quality of service is measured as a percentage value of successful deliveries. A deliver is
considered successful if it has been satisfied in defined timeout. (e.g. 1 hour)

A little thought will show that some of these parameters are mutually interconnected. For example, one
can expect with the high performance a good QoS since the system would be able to deliver more requests.
Our goal is to find the algorithm resulting in good QoS, achieving good performance and having the smallest
delay per request as possible.

The evaluation parameters are monitored in regard to the moving rate of requests as well as the fixed
rate. All plots contain also statistical error bars indicating how closely the means are likely to reflect the
true values.

It is also important to mentioned that parameters explained in WFSG algorithm (section 4.4.3) have
following values:

� TIME WINDOW = 3600 (i.e. 1 hour)

� N WINDOWS = 4

� DECAY = 0.5

5.6. RESULTS OF THE EVALUATION 65

5.6.1 Moving rate

The moving rate of requests is defined as the number of requests that can arrive per minute. Figures 5.7
shows monitored parameters in the respect to the moving rate.

(a) Performance

(b) Delay of request

(c) QoS

Figure 5.7: Evaluation parameters in regard to moving rate of request

5.6.2 Fixed rate

The fixed rate is a projection of one particular rate to the simulation time. It shows how algorithms behave
during a fixed period of time. Fixed rate in plots is equal to 4 requests per minute and the observation

66 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

period is equal to 10 hours. The figures 5.8 show a projection of monitored parameters to the simulation
time.

(a) Performance

(b) Delay of request

(c) QoS

Figure 5.8: A projection of evaluation parameters to the simulation time

To provide the conclusion from the evaluation, WFQ algorithm performs very well comparing to other
algorithms, however on the other hand the average delay per the request reaches high-ranking values close
to FIFO algorithm where QoS suffers from this fact. From the perspective of our problem of running jobs
waiting for files to be delivered, the delay per request seems to be the most important information that one
should pay attention on. In respect to this evidence, the WFSG indicates the best results (1/2 of value
comparing to other algorithms) indeed with insufficiency in the performance.

5.6. RESULTS OF THE EVALUATION 67

5.6.3 A justification of WFSG parameters

The WFSG algorithm described in section 4.4.3 uses certain values for factors defined in formula 4.8. The
figures 5.9 show variants of WFSG varying on different values of parameters used in mentioned formula.
Variants are extreme limits of individual configurations. Following notation is used in the legend of plots:

WFSG (tape factor, file size factor, usage factor)

(a) Performance

(b) Delay of request

(c) QoS

Figure 5.9: A justification of WFSG parameters

One can distinguish from above plots that for instance the variant of (0,1,0) where the file size factor takes
precedence over all other considerations seems to be very good at delay and QoS and overcomes our proposed

68 CHAPTER 5. AN EVALUATION OF SCHEDULING ALGORITHMS

variant (0.6,0.1,0.3). However, on the other hand it suffers at performance which results in small number of
deliver requests. Furthermore, the variant of (0,0,1) where the usage history takes precedence over all other
considerations has the same behaviour as presented FIFO algorithm. The reason for this is that neither the
FIFO nor the variant of (0,0,1) doesn’t consider any performance key parameters.

To conclude, the variant of (0.6,0.1,0.3) balances all our defined evaluation parameters (performance, delay,
QoS) and therefore seems to be the best variant satisfying defined goals.

Chapter 6

Best placement strategy and
performance comparison

70 CHAPTER 6. BEST PLACEMENT STRATEGY AND PERFORMANCE COMPARISON

6.1 Synopsis

Having the efficient and fair-share scheduling algorithm for the tape system requests that is able to bal-
ance allocations across multiple users with the relation to an efficient performance is main and important
assumption in the Scalla/Xrootd architecture. However, in such distributed environment as can be seen in
STAR (hundreds of detached servers), the next important consideration is which server should be selected
to be a container of a new request from the tape system. This refers to more widely term referred as best
placement strategy.

In this type of situation, the software management tool (Scalla/Xrootd) has to make decisions of which
server should be selected for the file restore. The decision should be taken based on the available free space,
but also based on the load of server being in the set of possible selections. Both of these points cohere to each
other where the second one plays an important role in STAR (the storage is being attached to computing
nodes). For example, a server can have tremendous amount of free space, but may be overloaded by jobs
that are running on this server (the staging task will then likely be unsuccessful). The next use case can
be that the load is computed using improper conditions (badly determined load parameters) that results in
having small set of possible selections. Servers in this set soon become again overloaded with a likelihood
that they have to frequently proceed with the purge operation and therefore removing too eager and new
data-sets.

In this first part of this chapter, best placement strategies are studied in respect to an efficient load balanc-
ing of requests. The second part is dedicated to the performance comparison of Scalla/Xrootd with other
management tools used and available in STAR.

6.2 Best placement strategy

Since the conversion started to talk about selecting a node for fulfillment of staging operation, we have to
directly deal with the concept of load distribution between collaborating nodes. Indeed, a distributed data
access system can be in the situation where more than one choice can be available to fulfill a particular
incoming request (e.g. selecting a server for the file restore or more than one replica of the file).

The main purpose of load distribution is to improve the performance of the distributed system, usually
in terms of response time or resources availability spread over many collaborating nodes. A side effect of
this deals with the benefits coming from the distribution of the system itself, in the form of additional
reliability or larger storage space or computing power. The problem of distributing a load between collab-
orating nodes is related to a wider concept of resource allocation. The are two main approaches for the
attribution of the system load and resource allocation in distributed systems [19], static and dynamic
load distribution. The static load distribution assigns a work to hosts probabilistically or deterministically,
without considering the system’s status or the events coming from it, where dynamic distribution monitor
the workload and hosts for any factors that may affect the choice of the most appropriate assignment and
distribute the work accordingly.

Static approach is useful only when the workload can be accurately characterized and where the load’s
scheduler is in control of all activity, or is it at least aware of a consistent background over which it makes
its own distribution. If the background load is subject to fluctuations, or the characteristic of the single
cooperating nodes can vary independently then it usually cannot be solved by means of unique static be-
havior.
On the other hand dynamic distribution seeks to overcome the problems of relying on how to decide which
system workload may be assigned to each host for the best representation. This approach tries to incorpo-
rate two factors, firstly the resources currently available at a host and secondly the resources required by
the processes being distributed.

For the current available resources, this is reflected in Scalla/Xrootd by the definition of a ”load” com-
posed of 5 factors for assembled within a generic policy. Ideally, the combination of those 5 factors will be
able to reflect most common computer environments. Those are:

• CPU usage - percentage of CPU being used at the host

• Memory usage - the percentage of memory being used at the host

• Paging usage- the percentage of paging load being used at the host

6.2. BEST PLACEMENT STRATEGY 71

• Runtime usage - the percentage of run-time usage (e.g. how long the system has been running, how
many users are currently logged on)

• Network usage - the percentage of network resource being used at the host

For resource required by the processes being distributed, it is simplest to reflect two factors related to
Scalla/Xrootd architecture and request work-flow:

• Number of allocations - How many times the host was selected for a file restore

• Number of redirection - How many times the host was selected for opening a particular file located
on a host

First consideration involves a flexible scheduling algorithm based on combination of the mentioned 5 factors,
where each Scalla/Xrootd administrator can set up different thresholds for computing the overall workload.
Indeed, these flexible computations give a power of being able to build a ideal dynamic distribution of the
load among the cluster. For a realization of this approach, see the subsection 6.2.1.

There still remains the question: ”How the server is selected?”. Figure 6.1 shows the client’s interac-
tion with the server side, mainly representing server’s side work-flow of the selection algorithm.

The selection of a server start with a client request directed to the redirector node through the Scalla/Xrootd
protocol, Scalla/Xrootd part of the node requests its olbd through the olbd protocol to locate a file. Olbd
checks whether the file has been seen before by looking into its cache (XrdOlbCache::GetFile), if not and
the file is new, it is added into a cache (XrdOlbCache::AddFile) and the manager broadcasts (XrdOlbMan-
ager::BroadCast) a query for the file to all of its subscribers that have declared a capability to handle files.
If the file is already located in the olbd cache, the algorithm continues directly into method XrdOlbMan-
ager::SellByLoad without the broadcast operation.

The client is then asked to repeat the requests after a fixed amount of time during which responses
are collected by all the managers/supervisors which propagated the message to their cell. Data-servers
which has the file respond affirmatively, otherwise stay silent.

From this process, a list of zero or more data servers holding a file is determined and when the query
is resolved, two cases can happen:

1. primary selection - one or more replicas of the file exist on the nodes

2. secondary selection - no replicas on any nodes, a server has to be chosen for the file restore from MSS

In both cases, olbd has a result stored in a server mask, which server the purpose of being able to make
a selection and decision in the fastest possible way. The server mask helps to determine a subset of
servers/subsribers that correspond to a satisfaction of the queried file. In the case of primary selection,
one or more nodes that are having queried file and in the case of secondary selection, all nodes that have
declared an ability to accept new files into their cache. The manager is then going through all of it’s
nodes/subscribers in a loop and applies several following conditions (numbers in the following enumeration
corresponds to numbers in the figure (XrdOlbManager::SellByLoad):

1. Mask has to match (i.e. choosing if the server is in the selection list of the queried file)

2. Check for offline or suspended server

3. Check for minimum free space available at node

4. Check if the actual load of the server doesn’t exceed the configured maximal load

If one of these conditions is false, the manager remembers it and uses this information for the final answer
to the client. If the server in the loop went through all conditions without blemish and there was previously
a suitable server, it would check for the coextensive load. This means whether a difference of server’s loads
is within a specified and configurable range. Within this configurable range (or margin), the workload of
the servers are considered as identical and the manager needs to apply second factor of load distribution
to select one, the second criterion is the resource required by the processes being distributed. In case
of a file restore, it is either the number of allocations (secondary selection), or the number of re-directions
(primary selection). When the cycle is finished, the manager can delay a client (XrdOlbManager::CalcDelay)
for a fixed time computed from collected information such as number of overloaded nodes or the number
of suspended nodes. Alternatively, it returns the answer with a redirection to the server. From the above
explanation is obvious that the selection is mainly based on the current load of servers that are having either
the queried file or are targets of new incoming files from the MSS. We therefore investigate the workload of
our system’s environment in the next subsection.

72 CHAPTER 6. BEST PLACEMENT STRATEGY AND PERFORMANCE COMPARISON

OLBD XROOTD

ClientServerXrootd processOLBD process

EthernetFile descriptor

Redirector node

XrdOlbServer::do_Select

Select a server

XrdOlbCache::AddFile

XrdOlbManager::BroadCast

W
ai

t

OLBD protocol XROOTD protocol Request
to open a

file

XrdOlbManager::SellByLoad

StateMask

Max load Min free
space

Coextensive
load ?

of
allocations

Greater
load

1 2

34

5

6 6

XrdOlbManager::SellByLoad

StateMask

Max load Min free
space

Coextensive
load ?

of
redirections

Greater
load

1 2

34

5

6 6

R
ed

ire
ct

io
n

of
 c

lie
nt

 to
 th

e
se

le
ct

ed
 s

er
ve

r

XrdOlbManager::CalcDelay

One or more
replicas
exists on

nodes

Secondary selection

No replicas
on nodes

(one at MSS)

XrdOlbCache::GetFile

Seen before ?

Type of mask ?

Yes

Wait

selected

No

selectedOverloaded, suspende etc. ?

P
rim

ar
y

se
le

ct
io

n

Figure 6.1: The server selection algorithm

6.2. BEST PLACEMENT STRATEGY 73

6.2.1 Investigating workload of the system environment

The previous section briefly discussed a general overview on how to build a flexible load distribution in the
distributed file system and how this load enters into the selection of a data server. We mentioned the fact
that analysis jobs are the creators of a load on the machine.
The 5 parameter space mechanism described in the previous section certainly allows to reflect most envi-
ronments, e.g. CPU-bound environments may have the biggest weight on the CPU factor, memory-bound
environments will have the highest benefit using the memory factor.
The fundamental questions still remains: ”How to figure out which factors-bound is my environment ?”.
For resolving this issue, we have measured and collected statistic of all workload factors at each node of
the STAR Linux farm. Those results helped to assemble the final shape of the formula and determine
factors-bound of the STAR environment.

For the best representation, visualization and aggregation of the all results from the farm, we computed and
prepare a plot with x-axis as the percentage of the measured load factor, while the y-axis value is a number
of nodes which had the same particular value of the load. Figure 6.2 shows example plots for measurements.
Basically, from those 5 factors, two of them can heavily affect IO throughput of one node, it is memory and
paging factor. In most today’s operating systems, the system which is lacking enough memory would start
paging on the local hard drive and will affect IO throughput being scheduled to this system. The second
effect of paging could also affect the CPU itself (intense swapping could use a significant amount of resources
and lead to IO thrashing). Perhaps of a lesser importance, we imagine that the factor to formula would be
a CPU factor could affect the global performance as if none are available, it would impact the data server
process (Scalla/Xrootd and olbd) themselves. Therefore as a conclusion, we assembled our empirical formula
with choosing as the biggest impact on the memory, paging and CPU factors along with other consideration
as follow:

• 20% of CPU factor

• 10% of network factor

• 20% of paging factor

• 10% of runtime factor

• 40% of memory factor

The network factor of the load is somehow self-correlated to the overall distribution, since using Scalla/Xrootd
introduces higher number of network traffic by reading the file remotely through the network. We have set
this threshold very low and this correlating factor will need additional work in future to determine its exact
impact.

Figure 6.3: The overall workload seen by Scalla/Xrootd

Figure 6.3 serves as the verification of the right chosen values and possible corrections and fitting. Our
effort was not only assemble the load thresholds, but also to create a perfect distribution of the load immi-
nent to the Normal distribution 5.2.1.
The purpose of the normal distribution refers to the discussion in the chapter’s synopsis. The normal distri-
bution has the property that about 68% of values drawn from a normal distribution are within one standard
deviation σ away from the mean µ. This gives a flexibility that by applying the maximum load threshold,
the set of servers for the selection is large enough and therefore the selection of same servers is avoided.

74 CHAPTER 6. BEST PLACEMENT STRATEGY AND PERFORMANCE COMPARISON

(a) CPU factor (b) Memory factor

(c) Network factor (d) Paging factor

(e) Run-time factor (f) Overall plot with all factors

Figure 6.2: Factors-bound investigation

6.2. BEST PLACEMENT STRATEGY 75

Since, the observation was provided statically and at the one moment of the farm’s workload, a large
amount of statistical data needs to be collected to ensure a right setting of the thresholds which is stable to
load fluctuations. These statistics were gathered and computed by hour, day and week periods. Addition-
ally, to check if the overall load doesn’t fluctuate too much in time, the 3-D representation of load, with the
third axis being the dimension of ”moving in time”. It has been prepared in the same statistic’s periods.
Figure 6.4 shows hour statistic. For more statistic plots, please see the appendix C. For more details about
the measurement, please see the Appendix A.1.5.

Figure 6.4: The 3-D distribution of the farm workload seen by Xrootd

76 CHAPTER 6. BEST PLACEMENT STRATEGY AND PERFORMANCE COMPARISON

6.3 Measuring and comparing the performance

The success of the data distributed system relies on the ability to support a reasonable increasing number
of users with stable performance of individual file operations and therefore achieve scalability of the system.
This will certainly encourage its use and facilitate the migration of users from their addictions to other
systems.

The performance of file servers or distributed systems is usually measured as a time of single operation
to read/write a chunk of data, sometimes extended with many concurrent operations at one point of a time.
This evidently reflects a performance of one independent server being detached from the global view of
many cooperating servers in distributed environment, but not showing the aggregated performance of the
whole system. It implies a need for aggregate picture of whole system in concurrent fashion and under a
heavy load of many requests. Additionally, the picture needs to be taken at the same environment and
under identical conditions for a comparison with other storage solutions, i.e. same kind of files (structure,
compression etc.), same technique of reading, same global workload of environment etc. For achievement of
all these requirements within the STAR framework, the aggregation unit was chosen as a one job reading
sequentially physics events from structured files within ROOT framework. It definitely ensures requirements
of the same technique of reading and same kind of files.

While the single server measurements are usually collected on the dedicated hardware, without any load of
other processes, the effort is to see a behavior of the system in real world and scenario, i.e. load caused by
other users and processes. It will give a preview of the system’s load-balancing efficiency. To ensure the
requirement of the same global workload and load balancing efficiency, one has to measure and compute
many independent tests at different times and therefore diverse workload’s states of the environment.

To achieve the global view of the performance and scalability of the system we consider a fashion of increas-
ing number of jobs and their aggregate IO throughput. To capture this picture, an additional aggregate
and advanced algorithm is needed, since the view is based on many concurrent and subsequent jobs running
at the same time which is very difficult to achieve in share environment. These share environments are
well-known with their queues introduced in the batch systems and triggering the execution of jobs based on
different conditions and policies of the particular installation.
As a summary, the measurement will produce following information:

• a starting and ending times of the mutually different jobs executed in different times of a test

• an average IO throughput of the particular job

• a job’s competency to particular test of measurement

• a length of the particular test indicated by start time and end time of the first and the last collected
job

• an average length of one job in the test

When each job can start and finish in different time, the aggregation of simultaneously running jobs becomes
very difficult. Figure 6.5 shows 4 fundamental possibilities how the job can participate within a time range,
where Θ is an average length of the job and Ti , Tj are start, end time of a time range. To overcome the
difficulty of aggregating simultaneously running jobs within a time range, we fetched a formula 6.1 counting
a contribution of each job covering 4 mentioned possibilities within specified time range:

Job′s contribution =
min (Tj , ejob)−max (Ti , sjob)

Tj − Ti
(6.1)

where

(i) Ti , Tj are start and end time of a time range

(ii) sjob , ejob are start and end time of a job

6.3. MEASURING AND COMPARING THE PERFORMANCE 77

Ti TjΘ

Figure 6.5: Four fundamental possibilities of job’s participation within a time range

To illustrate this formula, lets consider following times for our defined cases:

(Θ) Ti = 50 and Tj = 150

(1) sjob = 30 and ejob = 170

(2) sjob = 30 and ejob = 100

(3) sjob = 50 and ejob = 125

(4) sjob = 100 and ejob = 170

Then, the job’s contributions are then equal to:

Job′s contribution [1] =
150− 50
150− 50

=
100
100
∗ 100 = 100%

Job′s contribution [2] =
100− 50
150− 50

=
50
100
∗ 100 = 50%

Job′s contribution [3] =
125− 50
150− 50

=
75
100
∗ 100 = 75%

Job′s contribution [4] =
150− 100
150− 50

=
50
100
∗ 100 = 50%

All jobs running within a specified time range could be selected by the following query:

(sjob ≥ Ti
⋂

sjob < Tj)
⋃

(ejob > Ti
⋂

ejob ≤ Tj)
⋃

(sjob < Ti
⋂

ejob > Tj)

For representation of all test, the contour plots has been chosen, where x-axis is number of jobs and y-axis
is aggregated IO related to particular number of jobs. It gives not only a opportunity to see most frequent
values which has been measured and seen, but also it helps to somehow reflect non-dedicated environment
for the measurement (i.e. shared with other users). In previous chapters, we mentioned that each request
(not previously presented at cache) in Scalla/Xrootd needs to be delayed for fixed time. This time can
actually slow the performance when comparing with direct open of file. Therefore, we were interested to see
2 different cases:

• read rate - measured IO rate without open and close delays

• open rate - measured IO rate with open and close delays

The other storage solutions available within STAR framework, which we could measured were: Rootd [30]
and Panasas [10] exposed to users via NFS protocol.

78 CHAPTER 6. BEST PLACEMENT STRATEGY AND PERFORMANCE COMPARISON

Figure 6.6 shows results from all run tests on all mentioned storage solutions. These results show that
Scalla/Xrootd scales with number of jobs as the best compare to all other solutions and even has most
values placed higher than others. This signs that even commercial and very expensive solution (Panasas)
with its storage area network (SAN) model has poorer results than tenfold cheaper solution (Scalla/Xrootd)
with its Direct Attached Storage (DAS) model. Moreover, it is observable, that Scalla/Xrootd with its fixed
delay time has still better performance comparing to other solutions.

One can also distinguish that average IO throughput per one job is 3 MB/s for xrootd and 1.5 MB/s
for Panasas. These numbers can be considered as very slow IO throughput that one would usually expect.
To argue this statement, STAR is using ROOT framework [28] as its core component. ROOT has its own
internal IO design with a certain maximal IO throughput limited by the structure and compression of ROOT
files. We measured that one job that reads a particular ROOT file can reach up to 6 MB/s. To conclude,
our measurement shows that by using xrootd, we are able to achieve a half of this theoretical limit, however
under heavy load of requests likely reading from the same hard drives and thus slowing the IO of other
competitive jobs.

6.3. MEASURING AND COMPARING THE PERFORMANCE 79

(a) NFS aggregate IO open rate (b) NFS aggregate IO read rate

(c) Rootd aggregate IO open rate (d) Rootd aggregate IO read rate

(e) Xrootd aggregate IO read rate (f) Xrootd aggregate IO read rate

Figure 6.6: Aggregate IO comparison of several storage solutions

80

Chapter 7

Conclusion

82 CHAPTER 7. CONCLUSION

By performance comparison measurements, it has been observed that distributed storage topology served
by Scalla/Xrootd software solution is competitive to expensive centralized storage solutions. Moreover, it is
able to scales better with number of jobs.

However, this software solution lacks coordination of requests when asking files from tertiary storage sys-
tem and that can result either in the total collapse of the tertiary storage system or in the poor performance
overall. The usage of the system then becomes inefficient in the sense that user’s tasks and jobs asking for
files from the tertiary storage system may be waiting for the file to be served while at the same time locking
a CPU slot from a resource management system. Consequently, the entire facility load usage drops and one
loses the battle of balancing cost and optimization. One of the most costly aspects of dealing with robotic
tertiary storage system is the time it takes to switch a tape. Another latency problem is searching for a
file on a tape depending on the tape size and the search speed and also size of the file consuming the tape.
Working toward avoiding or minimizing these delays results in a large performance gain.

To achieve this benefit, a scheduling algorithm can be used having the flexibility to stage files in tape-
optimized order and prioritizing files with the greater size. However, the algorithm has to be fair enough
in respect to the users where ideally no user is resource starved (infinitely waiting for his requests to be
completed). First level of fairness can be achieved by servicing users in the order how they come to the
system. One can imagine that this approach is not fair enough since a first come user having a large number
of requests can saturate the system for a long time. This also results in poor performance of the system
that doesn’t involve any mentioned optimizations. To overcome this limitation, the next step is to define
for each user a separated queue and service those queues according to user’s priorities along the line of tape
optimizations in each separated queue. This scenario still results in poor fairness because users with higher
defined priority can again saturate the system easily, not allowing other users to satisfy their requests. The
optimizations are also not efficient enough since the tape optimizations should be performed on the entire
queue (not in each separated queue of a certain user). All of these problem can be overcame by taking into
account the cost of each of the request. The cost could be defined by incorporating parameters relevant to
the optimal use of the tape system, but also usage history of the user and priority resulting in good response
of the entire system. The usage history accounts user’s usage and adjusts the cost of the request according
to this usage. All of these findings have been proved in this work by evaluating those distinct algorithms on
the simulator of tape storage system.

Such algorithm needs to have a queue of requests long enough in order to be sufficient for the system
to make sensible optimizations and break from a FIFO approach (through time segmented requests). The
approach of re-organizing the requests for optimal use is however in clash with the sequential processing
of files requested within user’s tasks analyzing the data. To overcome this limitation, one can publish the
intend of the entire user’s task before processing it and therefore achieve the tape-optimization efficient
enough. The publishing process we describe is better known as: ”pre-staging”.

Even using the proposed algorithm along the coordination with pre-staging capabilities, the system has
to make decisions where to place a request, i.e. make a selection from the set of given choices. This is very
important aspect when considering the topology of the storage being attached to computing nodes where
the system has to compete with the load of user’s tasks being outside of the system’s control options. The
decision can be based on the ideal distribution of servers according to their reported load and usage. The
recipe on how to build this distribution has been presented and demonstrated.

Even the whole system should be able to handle the stress of requests aimed at the tertiary storage
system, it can be still improved in the way of cache management where efficient cache management can
decrease the number of requests to tertiary storage system. A cache management system which has proved
itself reliable and scalable is called Storage Resource Manager (or ”SRM”). As an outcome of our present
work, Scalla is not only ready for prime time use of SRM (grid-enabled) technologies but our comprehensive
performance studies and results can be considered as policies for the integrated SRM/Scalla distributed
storage solution.

Appendix A

Implementation details

84 APPENDIX A. IMPLEMENTATION DETAILS

A.1 Measurements and statistics

All measurements and statistics have been implemented using Perl scripts and java chart drawing package
jfreechart [61]. Perl scripts can be considered as a ”core” part of each measurements where the drawing
package has been simply used to interpret prepared results into a form of suited plot. One of the next
required features posed on the Perl scripts was the ability to gather and publish multiple time statistic of
measurements. The publishing form has been chosen in the form of HTML web page to simplify searching
of rare events that could occurred in different times. The script has been triggered using the Linux cron
(time-based scheduling service).

The core has always following parts having distinguished and well defined objectives:

• data collection for each of the measurement (different sources - database, log files etc.)

• algorithm/logic that counts values for particular plot representing the measurement

• methods for different time statistics varying in the size of time bin

• storing of counted values into database for other type of measurements

• method that calls particular java implementation of the plot representation

• creating web pages from already generated results

• synchronization of web pages with a web server container

Following subsection contains always main ideas and difficulties in obtaining the specific measurement.

A.1.1 DataCarousel performance

This measurement collects values from DataCarousel database, particularly from its accounting table and
counts throughput of the system according to defined time bin and also time range that is represented by
the character of the statistic (hour, day, week etc).

A.1.2 Monitoring of HPSS

The implemented interfaces of mass storage system module for the STAR contains the handshake with
defined database. The database keeps track of successful request asking for files to HPSS as well as failed
requests with certain error indication. Other information that is being gathered is the number of requests
that are coming to scalla/xrootd cluster. This collection is based on scanning log files, usually once a day
and therefore generating plots backward.

In conclusion, following parameters are monitored:

A number of all requests coming to xrootd

B number of successful requests to HPSS

C number of failed requests to HPSS

D error types of failed requests to HPSS

These parameters helped to easily obtain and form following attractive informative plots reflecting the
behavior of the system as a function of time:

1. Number of requests moving in time

2. Percentage of failures seen by the server, computed as: C/A

3. Percentage of failed requests over all requests to HPSS, computed as: B/(B+C)

4. Percentage of HPSS requests over all requests to XROOTD, computed as: (B+C)/A

5. Proportion of HPSS errors over period of time, computed using D

A.1. MEASUREMENTS AND STATISTICS 85

A.1.3 Key parameters of tape system performance

The key parameters of tape system system performance has been identified in the chapter 3. Those param-
eters had to be monitored in relation to the performance of DataCarousel system and also particular time.
As the source of data, DataCarousel database along with the HPSS historical database has been used. The
hpss database keeps track of all requests with information such as location on a tape or a size of the request.
By combining values from both databases, the mentioned plots in section 3.4.1 could be drawn.

A.1.4 Key parameters proof

In order to prove the key parameters, it has been required to prepare 3 different sets of requests containing
files from the same tape and within a particular file size range. Those three different sets correspond to
mentioned file types in subsection 3.4.2.

Firstly, for each of the set all files available for the particular file type has been obtained. After, a tape id
and file size has been assigned to each file. A certain sub-list of file groups within a range of file size and
with a same tape id has been sorted out using the prepared list. The size of each group has been exactly
equal to mentioned 15 files where the number of groups has been equal to number of available tape drives
(i.e 7). In order to have a significant and noticeable proof, the number of those sub-lists had to be greater
than one.

A.1.5 Load statistic

The factors used to compute the load are collected within the Scalla/Xrootd process. Scalla/Xrootd redirec-
tor/supervisor node (subsection 2.5.2) requires each 5 minutes a report containing these factors from each
node of the cluster. Within this process, all these factors have been reported into certain database allowing
later combination. The structure of this database has been designed with the consideration to hundreds of
nodes reporting their load values each 5 minutes (around 42 millions of records per one year). This means
that values are inserted for particular hours, days and weeks offering possibility to employ efficient database
indexes as can be seen in the figure Fig. A.1.

As one can see, these values can be further combined in many ways supplying many different farm load
distributions. The measurement framework allows to easily change the compute formula and therefore see
any modification in the load distribution.

Figure A.1: SQL create script for load statistic table

CREATE TABLE CAS_LoadReport_2007
(

node_id SMALLINT NOT NULL,
time DATETIME,
xload TINYINT NOT NULL,
cpu TINYINT NOT NULL,
mem TINYINT NOT NULL,
pgio TINYINT NOT NULL,
ipio TINYINT NOT NULL,
week TINYINT NOT NULL,
day TINYINT NOT NULL,
hour TINYINT NOT NULL

);
CREATE INDEX LR_CAS_2007_TIME ON CAS_LoadReport_2007 (week,day,hour);
CREATE INDEX LR_CAS_2007_NODE ON CAS_LoadReport_2007 (node_id);

86 APPENDIX A. IMPLEMENTATION DETAILS

A.2 Tape system simulation

Tape system simulation package is written in java programming language and its name-space is called
com.pjakl.dip.simulation. This name-space has 2 main packages:

� core

? It contains core classes that service the process of a simulation.

? It defines abstract and generic classes that are further inherited or instantiated. (e.g. Ab-
stractEvent, AbstractDistribution etc.)

� tapeSystem

? This is an implementation of core classes. For instance, it contains implementations of events
mentioned in table 5.3 or 5.4

? It also contains implementation of all surveyed algorithms including classes used to fulfil their
logic requirements (e.g. usage history etc.)

? This package also contains classes used to generate workload (user’s dimension, tape id or file
size generation etc.)

From the above, it can be observed that the core package contains generic classes that can be used to sim-
ulate any type of machine while the tapeSystem package contains an implementation of such machine.
It has been mentioned that the simulator uses log4j [60] package. By default the logging of events is enabled
on the level DEBUG. In order to speed up the simulation, please use external log4j configuration file that
can set up different level of logging messages (e.g. WARN).

To pass your own external configuration file use following property during the execution (assuming that
your classpath contains log4j as well as the jfreechart [61] library):

java -Dlog4j.configuration=path_to_configuration SimulationFixedRateManager.class
or

java -Dlog4j.configuration=path_to_configuration SimulationMovingRateManager.class

An example of the log4j external configuration file could be found on the enlosed cd as well as the javadoc
documentation of the simulator.

A.3 Coexistence with other Data management tools in STAR

Figure A.2 shows a server call stack within a user’s request to open a file. User’s request to open a file is in
form of XFN syntax, we refer this as the Xrootd File Name, which encapsulates both scopes of different
name-spaces, the ROOTD PFN-like as well as XROOTD LFN-like.

Client makes a request to the server through the xrootd protocol, when request is accepted, the hunt for
the file starts. The LFN/PFN module comes into the scene during the calling of the ”open ufs” function.
The server checks firstly whether the XFN is PFN-like or secondly if it validates as a LFN. If none of these
operations are successful, the file is scheduled to be staged from MSS. This involves the check whether the
file is already being staged from MSS or has been seen and failed. If not, server will firstly check existence
of the file in MSS using mssgwcmd command [62].

When the file is presented in MSS, server creates new thread devoted for staging, triggers execution of
stagecmd command [62] and registers it in the list of pending requests. When the registration is done,
it delays a client for the specific time. After the specified time, client repeats the initial request. When
staging is successful, the server would succeed in second check of the LFN/PFN module, whether the file is
presented in xrootd name-space. Our approach involved one additional UNIX stat() operation of a file and
therefore didn’t introduce any performance bottleneck.

The implementation of the LFN/PFN module can be found on the enclosed cd.

A.3. COEXISTENCE WITH OTHER DATA MANAGEMENT TOOLS IN STAR 87

Client side

Server side

XrdXrootdProtocol::accept

XrdOfsFile::Open

XrdOssFile::Open

XrdOssSys::Insert_PendList

No

Wait

XrdOssSys::Pending_State

Yes
No

Is pending ?

Seen before ? State ?Yes

No
Failure

Success

Wait

hpss_talk.plPERL processXrdOssSys::MSS_Stat

In MSS ? NO

PERL process hpss_stage.plXrdOssStage::Stage_Async

Asynchronous handling (threads)

Yes

XrdOssSys::Open_ufs

No

XFN PFN

XFN LFN

Yes

Yes

Success Failure

Requests a “file” in XFN syntax

X
ro

ot
d

pr
ot

oc
ol

Figure A.2: The call stack of the server side within a user’s request

88

Appendix B

Enclosed CD

90 APPENDIX B. ENCLOSED CD

The table B.1 illustrates the content of enclosed CD. The description of each directory is kept on the
informative level and leave a reader to explore the content of each directory by himself.

Table B.1: The listing of enclosed CD
Title Description

load CAS
Load statistic for the analysis cluster (CAS) of STAR computing

resources.

load CRS
Load statistic for the reconstruction cluster (CRS) of STAR computing

resources. Load statistic of CAS and CRS is being hold separately
because the load statistics show different behaviours.

hpss monitoring
Module that is responsible for gathering and drawing plots used to

monitor Scalla/Xrootd and HPSS.

key params
Module that is responsible for gathering and drawing plots used to
monitor key performance parameters in relation to DataCarousel

performance.

params proof
It contains script that is able to prepare list of requests used in the

measurement A.1.4.

io comparison
Module that was used to compare data access solutions described in

section 6.3.

xrootd
The directory that contains files that have been developed in order to
configure and evaluate Scalla/Xrootd (load statistic, hpss interface,

cluster management).

tape system simulation
The simulator package used to emulate tape system and therefore

evaluate proposed algorithms in section 4.

thesis
The directory that contains LATEX sources and images of thesis

write-up.

Appendix C

Load statistic

92 APPENDIX C. LOAD STATISTIC

(a) Week 22 (b) Week 23

(c) Week 24 (d) Week 25

(e) Week 26 (f) Week 27

Figure C.1: Summary of all individual load factors gathered on the STAR CAS cluster (cluster
dedicated for analysis jobs)

93

(a) Week 22 (b) Week 23

(c) Week 24 (d) Week 25

(e) Week 26 (f) Week 27

Figure C.2: Xrootd load distribution statistic on the STAR CAS cluster (cluster dedicated for
analysis jobs showing very stable distribution over many weeks)

94 APPENDIX C. LOAD STATISTIC

(a) Week 22 (b) Week 23

(c) Week 24 (d) Week 25

(e) Week 26 (f) Week 27

Figure C.3: 3-D Xrootd load distribution statistic with time dependency of the STAR CAS
cluster (cluster dedicated for analysis jobs showing very stable load distribution over many weeks)

95

(a) Week 32 (b) Week 33

(c) Week 34 (d) Week 35

(e) Week 36

Figure C.4: 3-D Xrootd load distribution statistic with time dependency on the STAR CRS
cluster (cluster dedicated for reconstruction jobs showing lots of fluctuations introduced by the identical
behavior of reconstruction’s jobs)

96

Bibliography

[1] D. McAdam, “Is tape really cheaper then disk ?” Data Mobility Group, datamobilitygroup.com, Tech.
Rep., October 2005.

[2] P. Fuhrmann, “dCache, the commodity cache,” in Proc. of Twelfth NASA Goddard and Twenty First
IEEE Conference on Mass Storage Systems and Technologies, 2004.

[3] A. Hanushevsky, A. Dorigo, and F. Furano, “The next generation root file server,” in Proc. CHEP’04,
2004.

[4] Auspex Inc., “A storage architecture guide,” STORAGEsearch.com, May 2000.

[5] D. Alabi, “NAS, DAS, SAN ? - choosing the right storage technology for your organization,” STOR-
AGEsearch.com, May 2004.

[6] Network file system (nfs). [Online]. Available: http://www.faqs.org/rfcs/rfc1813.html

[7] D. Patterson, G. Gibson, and R. Katz, “A case for redundant arrays of inexpensive disks (RAID),” in
Proc. Int’l Conf. Management of Data. ACM, 1989, pp. 109–116.

[8] J. May, Parallel I/O for High Performance Computing. Academic press, 2001.

[9] D. Nagle, D. Serenyi, and A. Matthews, “The panasas activescale storage cluster - delivering scalable
high bandwidth storage,” in Proc. of the ACM/IEEE SC2004, November 2004.

[10] Panasas file system (panfs). [Online]. Available: http://www.panasas.com/panfs.html

[11] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” 2003. [Online]. Available:
citeseer.ist.psu.edu/schwan03lustre.html

[12] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large computing clusters,” in Proc.
of the First Conference on File and Storage Technologies (FAST), Jan. 2002, pp. 231–244. [Online].
Available: citeseer.ist.psu.edu/schmuck02gpfs.html

[13] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” 2003. [Online]. Available:
citeseer.ist.psu.edu/ghemawat04google.html

[14] D. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file system workloads,” pp. 41–54.
[Online]. Available: citeseer.ist.psu.edu/roselli00comparison.html

[15] A. L. Chervenak, “Tertiary storage: An evaluation of new applications,” Ph.D. dissertation, University
of California, Berkeley, 1994.

[16] D. Teaff, D. Watson, and B. Coyne, “The Architecture of the High Performance Storage System
(HPSS),” in Proceedings of the Goddard Conference on Mass Storage & Technologies, College Park,
Maryland, 1995. [Online]. Available: citeseer.ist.psu.edu/teaff95architecture.html

[17] Linear Tape Open (LTO) technology. [Online]. Available: http://www.lto.org

[18] B. Haeusser, et al., IBM System Storage Tape Library Guide for Open Systems, ser. IBM RedBooks.
Vervante, October 2007.

[19] F. Furano, “Large scale data access: Architectures and Performance,” Ph.D. dissertation, Universit‘a
Ca Foscari di Venezia, January 2006. [Online]. Available: http://www.unive.it/media/dipInformatica/
phd/TD-2006-1.pdf

[20] C. Kesselman and I. Foster, The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, November 1998. [Online]. Available: http://www.amazon.fr/exec/obidos/
ASIN/1558604758/citeulike04-21

[21] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “Xrootd - a highly scalable architecture for data
access,” in Proc. WSEAS’05, 2005.

97

http://www.faqs.org/rfcs/rfc1813.html
http://www.panasas.com/panfs.html
citeseer.ist.psu.edu/schwan03lustre.html
citeseer.ist.psu.edu/schmuck02gpfs.html
citeseer.ist.psu.edu/ghemawat04google.html
citeseer.ist.psu.edu/roselli00comparison.html
citeseer.ist.psu.edu/teaff95architecture.html
http://www.lto.org
http://www.unive.it/media/dipInformatica/phd/TD-2006-1.pdf
http://www.unive.it/media/dipInformatica/phd/TD-2006-1.pdf
http://www.amazon.fr/exec/obidos/ASIN/1558604758/citeulike04-21
http://www.amazon.fr/exec/obidos/ASIN/1558604758/citeulike04-21

98 BIBLIOGRAPHY

[22] P. Fuhrmann, “dCache, a distributed data storage caching system,” in Proc. of Computing in High
energy and nucler physics (CHEP), 2001.

[23] P. Fuhrmann, “dCache, lcg se and enhanced use cases,” in Proc. of Computing in High energy and
nucler physics (CHEP), 2004.

[24] P. Fuhrmann, “dCache, the overview,” White paper, 2004. [Online]. Available: http://www.dcache.org

[25] A. Hanushevsky and H. Stockinger, “Proxy service for the xrootd data server,” in Proc. SAG’04, 2004.

[26] Deutsches elektronen-synchrotron (DESY). [Online]. Available: http://www.desy.de

[27] Fermi national accelerator laboratory (fermilab). [Online]. Available: http://www.fnal.gov/

[28] R. Brun and F. Rademakers, “Root - an object oriented data analysis framework,” in Proceedings
AIHENP’96 Workshop, Lausanne. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997), Sep. 1996, pp.
81–86.

[29] ROOT framework. [Online]. Available: http://root.cern.ch

[30] P.Jakl, et al., “From rootd to xrootd, from physical to logical files: experience on accessing and managing
distributed data,” in Proc. of Computing in High Energy and Nuclaer Physics (CHEP’06), 2006.

[31] F. Furano, “Large scale data access: Architectures and performance,” Ph.D. dissertation, University of
Venezia, Department of Informatics, January 2006.

[32] A. Hanushevsky and B. Weeks, “Scalla: Scalable cluster architecture for low latency
access, using xrootd and olbd servers,” White paper, 2006. [Online]. Available: http:
//xrootd.slac.stanford.edu/papers/Scalla-Intro.htm

[33] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content distribution technolo-
gies,” ACM Comput. Surv., vol. 36, no. 4, pp. 335–371, 2004.

[34] P. Jakl, J. Lauret, and M. Sumbera, “Managing widely distributed data-sets,” Faculty of Nuclear
Sciences and Physical Engeenering, Czech Technical University, Tech. Rep., 2006, research work.

[35] O. Bcarring, et al., “Storage resource sharing with CASTOR,” in In Proceedings of the 12th NASA
Goddard, vol. 21st IEEE Conference on Mass Storage Systems and Technologies, April 2004, pp. 345–
359.

[36] A. Shoshani, A. Sim, and J. Gu, Storage Resource Managers: Essential Components for the Grid.
Kluwer Academic Publishers, 2003, ch. In Grid Resource Management: State of the Art and Future
Trends, pp. 321–340.

[37] L. Bernardo, A. Shoshani, A. Sim, and H. Nordberg, “Access coordination of tertiary storage for
high energy physics applications,” in IEEE Symposium on Mass Storage Systems, 2000, pp. 105–118.
[Online]. Available: citeseer.ist.psu.edu/bernardo00access.html

[38] A. Shoshani, A. Sim, and J. Gu, “Storage resource managers: Middleware components for grid
storage,” 2002. [Online]. Available: citeseer.ist.psu.edu/shoshani02storage.html

[39] G. A. Stewart, D. Cameron, G. A. Cowan, and G. McCance, “Storage and Data Management in EGEE,”
in Australasian Symposium on Grid Computing and Research, vol. 68, Ballarat, Australia, 2007.

[40] E. Corso, et al., “STORM, an SRM implementation for LHC analysis farms,” in Proc. of Computing
in High energy and nucler physics (CHEP‘ 06), Mumbai,India, 2006.

[41] BeStMan - Berkeley Storage Manager. [Online]. Available: http://datagrid.lbl.gov/bestman/

[42] B. L. Tierney, D. Gunter, J. Lee, and M. Stoufer, “Enabling network-aware applications,” in 10th IEEE
International Symposium on High Performance Distributed Computing (HPDC), San Francisco, CA,
2001, pp. 281–302.

[43] A. Hanushevsky, Cache File System Support MPS Reference, SLAC, 2004. [Online]. Available:
http://xrootd.slac.stanford.edu/

[44] J. Lauret, G. Carcassi, E. Efstathiadis, and D. Olson, “The STAR Unifid Meta-Scheduler project,
a front end around evolving technologies for user analysis and data production,” in Proceedings of
Computing in High Energy and Nuclear Physics CHEP‘ 04, 2004.

http://www.dcache.org
http://www.desy.de
http://www.fnal.gov/
http://root.cern.ch
http://xrootd.slac.stanford.edu/papers/Scalla-Intro.htm
http://xrootd.slac.stanford.edu/papers/Scalla-Intro.htm
citeseer.ist.psu.edu/bernardo00access.html
citeseer.ist.psu.edu/shoshani02storage.html
http://datagrid.lbl.gov/bestman/
http://xrootd.slac.stanford.edu/

BIBLIOGRAPHY 99

[45] S. MicroSystems, “StorageTek T9940b tape drive,” 2005, white paper (www.sun.com).

[46] S. MicroSystems, “StorageTek LTO tape drives,” 2007, white paper (www.sun.com).

[47] B. Panzer-Steindl, “Some calculations for the sizing of tape storage performance,” CERN-IT, Tech.
Rep., March 2005.

[48] Performance to/from tape. [Online]. Available: http://www-isd.fnal.gov/UserPerformanceGuidlines.
html

[49] S. Prabhakar, D. Agrawal, and A. E. Abbadi, “Optimal scheduling algorithms for tertiary storage,”
Distrib. Parallel Databases, vol. 14, no. 3, pp. 255–282, 2003.

[50] Weighted Fair Queuing (WFQ). [Online]. Available: http://en.wikipedia.org/wiki/Weighted fair
queuing

[51] J. Kay and P. Lauder, “A fair share scheduler,” Commun. ACM, vol. 31, no. 1, pp. 44–55, 1988.

[52] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the maui scheduler,” Lecture Notes in
Computer Science, vol. 2221, pp. 87–??, 2001. [Online]. Available: citeseer.ist.psu.edu/jackson01core.
html

[53] M. Lijding, “Real-time scheduling of tertiary storage,” Ph.D. dissertation, University of Twente, May
2003. [Online]. Available: citeseer.ist.psu.edu/article/lijding03realtime.html

[54] T. Johnson, “An analytical performance model of robotic storage libraries,” Performance Evaluation,
vol. 27/28, no. 4, pp. 231–251, 1996. [Online]. Available: citeseer.ist.psu.edu/johnson96analytical.html

[55] T. Johnson and E. L. Miller, “Performance measurements of tertiary storage devices,” in Proc.
24th Int. Conf. Very Large Data Bases, VLDB, 24–27 1998, pp. 50–61. [Online]. Available:
citeseer.ist.psu.edu/article/johnson98performance.html

[56] StorageTek, “Sun StorageTek SL8500 Modular Library System,” 2007, product brochure
(www.sun.com).

[57] V. B. Iversen, “Teletraffic engineering handbook,” 2006, Technical University of Denmark.

[58] W. Krauth, Statistical Mechanics: Algorithms and Computations, ser. Oxford Master Series in Physics.
Oxford University Press, October 2006.

[59] Department of Computing Science, “JavaSim: Object-oriented discrete event simulation in Java,” Uni-
versity of Newcastle upon Tyne.

[60] Log4j - Logging services. [Online]. Available: http://logging.apache.org

[61] JFreeChart - free java chart library. [Online]. Available: http://www.jfree.org/jfreechart

[62] A. Hanushevsky, Open File System and Open Storage System Configuration Reference, SLAC, 2006.
[Online]. Available: http://xrootd.slac.stanford.edu/

http://www-isd.fnal.gov/UserPerformanceGuidlines.html
http://www-isd.fnal.gov/UserPerformanceGuidlines.html
http://en.wikipedia.org/wiki/Weighted_fair_queuing
http://en.wikipedia.org/wiki/Weighted_fair_queuing
citeseer.ist.psu.edu/jackson01core.html
citeseer.ist.psu.edu/jackson01core.html
citeseer.ist.psu.edu/article/lijding03realtime.html
citeseer.ist.psu.edu/johnson96analytical.html
citeseer.ist.psu.edu/article/johnson98performance.html
http://logging.apache.org
http://www.jfree.org/jfreechart
http://xrootd.slac.stanford.edu/

	diploma_thesis_pjakl.pdf
	Introduction
	Storage requirements, topologies and technologies
	Synopsis
	Centralized vs distributed topology
	Hardware vs software solution
	Tertiary storage technologies
	Magnetic tapes and drives
	Tape collections and robots

	Distributed file systems for HENP environment
	The dCache system
	Scalla (Structured Cluster Architecture for Low Latency Access) system

	Integration of Scalla/Xrootd with Storage Resource Manager
	Architecture integration overview
	Creating uniform name-space

	Performance survey of tertiary storage system
	Synopsis
	STAR analysis scenario
	Key parameters of the tape system performance
	File size parameter
	Number of files per tape mount parameter

	Evidence of the key parameters influence on the tape system's performance
	Monitoring key parameters in relation to performance
	Performance parameters analysis

	Effect on increasing the number of files per tape mounts
	Improvement demonstration in real environment

	Stability as another dimension of the efficiency
	Lifetime of a request

	Fair-share scheduling of tertiary storage system
	Synopsis
	A generalization of the problem
	Tertiary storage system scheduling specification
	Fair-share scheduling algorithms
	The First Come First Serve (FCFS) algorithm
	The Weighted Fair Queuing (WFQ) algorithm
	The Weighted Fair-share Grouping (WFSG) algorithm

	An evaluation of scheduling algorithms
	Synopsis
	Tape system hardware
	Tape drive model
	Tape library system and robot arm model

	Access time of request processing
	Request generation
	Mapping STAR data-set

	Software design of the simulator
	Events and scheduler of events
	Events of the tape system
	Work-flow of the tape system simulator

	Results of the evaluation
	Moving rate
	Fixed rate
	A justification of WFSG parameters

	Best placement strategy and performance comparison
	Synopsis
	Best placement strategy
	Investigating workload of the system environment

	Measuring and comparing the performance

	Conclusion
	Implementation details
	Measurements and statistics
	DataCarousel performance
	Monitoring of HPSS
	Key parameters of tape system performance
	Key parameters proof
	Load statistic

	Tape system simulation
	Coexistence with other Data management tools in STAR

	Enclosed CD
	Load statistic
	Bibliography

